1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
//! `Arithmetic` trait and its implementations.
//!
//! # Traits
//!
//! An [`Arithmetic`] defines fallible arithmetic operations on primitive values
//! of an [`ExecutableModule`], namely, addition, subtraction, multiplication, division,
//! exponentiation (all binary ops), and negation (a unary op). Any module can be run
//! with any `Arithmetic` on its primitive values, although some modules are reasonably tied
//! to a particular arithmetic or a class of arithmetics (e.g., arithmetics on finite fields).
//!
//! [`OrdArithmetic`] extends [`Arithmetic`] with a partial comparison operation
//! (i.e., an analogue to [`PartialOrd`]). This is motivated by the fact that comparisons
//! may be switched off during parsing, and some `Arithmetic`s do not have well-defined comparisons.
//!
//! [`ArithmeticExt`] helps converting an [`Arithmetic`] into an [`OrdArithmetic`].
//!
//! # Implementations
//!
//! This module defines the following kinds of arithmetics:
//!
//! - [`StdArithmetic`] takes all implementations from the corresponding [`ops`](core::ops) traits.
//!   This means that it's safe to use *provided* the ops are infallible. As a counter-example,
//!   using [`StdArithmetic`] with built-in integer types (such as `u64`) is usually not a good
//!   idea since the corresponding ops have failure modes (e.g., division by zero or integer
//!   overflow).
//! - [`WrappingArithmetic`] is defined for integer types; it uses wrapping semantics for all ops.
//! - [`CheckedArithmetic`] is defined for integer types; it uses checked semantics for all ops.
//! - [`ModularArithmetic`] operates on integers modulo the specified number.
//!
//! All defined [`Arithmetic`]s strive to be as generic as possible.
//!
//! [`ExecutableModule`]: crate::ExecutableModule

use core::{cmp::Ordering, fmt};

pub use self::{
    generic::{
        Checked, CheckedArithmetic, CheckedArithmeticKind, NegateOnlyZero, StdArithmetic,
        Unchecked, WrappingArithmetic,
    },
    modular::{DoubleWidth, ModularArithmetic},
};
use crate::{alloc::Box, error::ArithmeticError};

#[cfg(feature = "bigint")]
mod bigint;
mod generic;
mod modular;

/// Encapsulates arithmetic operations on a certain primitive type (or an enum of primitive types).
///
/// Unlike operations on built-in integer types, arithmetic operations may be fallible.
/// Additionally, the arithmetic can have a state. This is used, for example, in
/// [`ModularArithmetic`], which stores the modulus in the state.
pub trait Arithmetic<T> {
    /// Adds two values.
    ///
    /// # Errors
    ///
    /// Returns an error if the operation is unsuccessful (e.g., on integer overflow).
    fn add(&self, x: T, y: T) -> Result<T, ArithmeticError>;

    /// Subtracts two values.
    ///
    /// # Errors
    ///
    /// Returns an error if the operation is unsuccessful (e.g., on integer underflow).
    fn sub(&self, x: T, y: T) -> Result<T, ArithmeticError>;

    /// Multiplies two values.
    ///
    /// # Errors
    ///
    /// Returns an error if the operation is unsuccessful (e.g., on integer overflow).
    fn mul(&self, x: T, y: T) -> Result<T, ArithmeticError>;

    /// Divides two values.
    ///
    /// # Errors
    ///
    /// Returns an error if the operation is unsuccessful (e.g., if `y` is zero or does
    /// not have a multiplicative inverse in the case of modular arithmetic).
    fn div(&self, x: T, y: T) -> Result<T, ArithmeticError>;

    /// Raises `x` to the power of `y`.
    ///
    /// # Errors
    ///
    /// Returns an error if the operation is unsuccessful (e.g., on integer overflow).
    fn pow(&self, x: T, y: T) -> Result<T, ArithmeticError>;

    /// Negates a value.
    ///
    /// # Errors
    ///
    /// Returns an error if the operation is unsuccessful (e.g., on integer overflow).
    fn neg(&self, x: T) -> Result<T, ArithmeticError>;

    /// Checks if two values are equal. Note that equality can be a non-trivial operation;
    /// e.g., different numbers may be equal as per modular arithmetic.
    fn eq(&self, x: &T, y: &T) -> bool;
}

/// Extends an [`Arithmetic`] with a comparison operation on values.
pub trait OrdArithmetic<T>: Arithmetic<T> {
    /// Compares two values. Returns `None` if the numbers are not comparable, or the comparison
    /// result otherwise.
    fn partial_cmp(&self, x: &T, y: &T) -> Option<Ordering>;
}

impl<T> fmt::Debug for dyn OrdArithmetic<T> + '_ {
    fn fmt(&self, formatter: &mut fmt::Formatter<'_>) -> fmt::Result {
        formatter.debug_tuple("OrdArithmetic").finish()
    }
}

impl<T> Arithmetic<T> for Box<dyn OrdArithmetic<T>> {
    #[inline]
    fn add(&self, x: T, y: T) -> Result<T, ArithmeticError> {
        (**self).add(x, y)
    }

    #[inline]
    fn sub(&self, x: T, y: T) -> Result<T, ArithmeticError> {
        (**self).sub(x, y)
    }

    #[inline]
    fn mul(&self, x: T, y: T) -> Result<T, ArithmeticError> {
        (**self).mul(x, y)
    }

    #[inline]
    fn div(&self, x: T, y: T) -> Result<T, ArithmeticError> {
        (**self).div(x, y)
    }

    #[inline]
    fn pow(&self, x: T, y: T) -> Result<T, ArithmeticError> {
        (**self).pow(x, y)
    }

    #[inline]
    fn neg(&self, x: T) -> Result<T, ArithmeticError> {
        (**self).neg(x)
    }

    #[inline]
    fn eq(&self, x: &T, y: &T) -> bool {
        (**self).eq(x, y)
    }
}

impl<T> OrdArithmetic<T> for Box<dyn OrdArithmetic<T>> {
    #[inline]
    fn partial_cmp(&self, x: &T, y: &T) -> Option<Ordering> {
        (**self).partial_cmp(x, y)
    }
}

/// Wrapper type allowing to extend an [`Arithmetic`] to an [`OrdArithmetic`] implementation.
///
/// # Examples
///
/// This type can only be constructed via [`ArithmeticExt`] trait. See it for the examples
/// of usage.
pub struct FullArithmetic<T, A> {
    base: A,
    comparison: fn(&T, &T) -> Option<Ordering>,
}

impl<T, A: Clone> Clone for FullArithmetic<T, A> {
    fn clone(&self) -> Self {
        Self {
            base: self.base.clone(),
            comparison: self.comparison,
        }
    }
}

impl<T, A: Copy> Copy for FullArithmetic<T, A> {}

impl<T, A: fmt::Debug> fmt::Debug for FullArithmetic<T, A> {
    fn fmt(&self, formatter: &mut fmt::Formatter<'_>) -> fmt::Result {
        formatter
            .debug_struct("FullArithmetic")
            .field("base", &self.base)
            .finish_non_exhaustive()
    }
}

impl<T, A> Arithmetic<T> for FullArithmetic<T, A>
where
    A: Arithmetic<T>,
{
    #[inline]
    fn add(&self, x: T, y: T) -> Result<T, ArithmeticError> {
        self.base.add(x, y)
    }

    #[inline]
    fn sub(&self, x: T, y: T) -> Result<T, ArithmeticError> {
        self.base.sub(x, y)
    }

    #[inline]
    fn mul(&self, x: T, y: T) -> Result<T, ArithmeticError> {
        self.base.mul(x, y)
    }

    #[inline]
    fn div(&self, x: T, y: T) -> Result<T, ArithmeticError> {
        self.base.div(x, y)
    }

    #[inline]
    fn pow(&self, x: T, y: T) -> Result<T, ArithmeticError> {
        self.base.pow(x, y)
    }

    #[inline]
    fn neg(&self, x: T) -> Result<T, ArithmeticError> {
        self.base.neg(x)
    }

    #[inline]
    fn eq(&self, x: &T, y: &T) -> bool {
        self.base.eq(x, y)
    }
}

impl<T, A> OrdArithmetic<T> for FullArithmetic<T, A>
where
    A: Arithmetic<T>,
{
    fn partial_cmp(&self, x: &T, y: &T) -> Option<Ordering> {
        (self.comparison)(x, y)
    }
}

/// Extension trait for [`Arithmetic`] allowing to combine the arithmetic with comparisons.
///
/// # Examples
///
/// ```
/// use arithmetic_eval::arith::{ArithmeticExt, ModularArithmetic};
/// # use arithmetic_eval::{Environment, ExecutableModule, Value};
/// # use arithmetic_parser::grammars::{NumGrammar, Untyped, Parse};
///
/// # fn main() -> anyhow::Result<()> {
/// let base = ModularArithmetic::new(11);
///
/// // `ModularArithmetic` requires to define how numbers will be compared -
/// // and the simplest solution is to not compare them at all.
/// let program = Untyped::<NumGrammar<u32>>::parse_statements("1 < 3 || 1 >= 3")?;
/// let module = ExecutableModule::new("test", &program)?;
/// let env = Environment::with_arithmetic(base.without_comparisons());
/// assert_eq!(module.with_env(&env)?.run()?, Value::Bool(false));
///
/// // We can compare numbers by their integer value. This can lead
/// // to pretty confusing results, though.
/// let bogus_arithmetic = base.with_natural_comparison();
/// let program = Untyped::<NumGrammar<u32>>::parse_statements("
///     (x, y, z) = (1, 12, 5);
///     x == y && x < z && y > z
/// ")?;
/// let module = ExecutableModule::new("test", &program)?;
/// let env = Environment::with_arithmetic(bogus_arithmetic);
/// assert_eq!(module.with_env(&env)?.run()?, Value::Bool(true));
///
/// // It's possible to fix the situation using a custom comparison function,
/// // which will compare numbers by their residual class.
/// let less_bogus_arithmetic = base.with_comparison(|&x: &u32, &y: &u32| {
///     (x % 11).partial_cmp(&(y % 11))
/// });
/// let env = Environment::with_arithmetic(less_bogus_arithmetic);
/// assert_eq!(module.with_env(&env)?.run()?, Value::Bool(false));
/// # Ok(())
/// # }
/// ```
pub trait ArithmeticExt<T>: Arithmetic<T> + Sized {
    /// Combines this arithmetic with a comparison function that assumes any two values are
    /// incomparable.
    fn without_comparisons(self) -> FullArithmetic<T, Self> {
        FullArithmetic {
            base: self,
            comparison: |_, _| None,
        }
    }

    /// Combines this arithmetic with a comparison function specified by the [`PartialOrd`]
    /// implementation for `T`.
    fn with_natural_comparison(self) -> FullArithmetic<T, Self>
    where
        T: PartialOrd,
    {
        FullArithmetic {
            base: self,
            comparison: T::partial_cmp,
        }
    }

    /// Combines this arithmetic with the specified comparison function.
    fn with_comparison(
        self,
        comparison: fn(&T, &T) -> Option<Ordering>,
    ) -> FullArithmetic<T, Self> {
        FullArithmetic {
            base: self,
            comparison,
        }
    }
}

impl<T, A> ArithmeticExt<T> for A where A: Arithmetic<T> {}