1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
//! Modular arithmetic.

use core::{
    convert::{TryFrom, TryInto},
    mem,
};

use num_traits::{NumOps, One, Signed, Unsigned, Zero};

use crate::{arith::Arithmetic, error::ArithmeticError};

/// Encapsulates extension of an unsigned integer type into signed and unsigned double-width types.
/// This allows performing certain operations (e.g., multiplication) without a possibility of
/// integer overflow.
pub trait DoubleWidth: Sized + Unsigned {
    /// Unsigned double-width extension type.
    type Wide: Copy + From<Self> + TryInto<Self> + NumOps + Unsigned;
    /// Signed double-width extension type.
    type SignedWide: Copy + From<Self> + TryInto<Self> + NumOps + Zero + One + Signed + PartialOrd;
}

impl DoubleWidth for u8 {
    type Wide = u16;
    type SignedWide = i16;
}

impl DoubleWidth for u16 {
    type Wide = u32;
    type SignedWide = i32;
}

impl DoubleWidth for u32 {
    type Wide = u64;
    type SignedWide = i64;
}

impl DoubleWidth for u64 {
    type Wide = u128;
    type SignedWide = i128;
}

/// Modular arithmetic on integers.
///
/// As an example, `ModularArithmetic<T>` implements `Arithmetic<T>` if `T` is one of unsigned
/// built-in integer types (`u8`, `u16`, `u32`, `u64`; `u128` **is excluded** because it cannot be
/// extended to double width).
#[derive(Debug, Clone, Copy)]
pub struct ModularArithmetic<T> {
    pub(super) modulus: T,
}

impl<T> ModularArithmetic<T>
where
    T: Clone + PartialEq + NumOps + Unsigned + Zero + One,
{
    /// Creates a new arithmetic with the specified `modulus`.
    ///
    /// # Panics
    ///
    /// - Panics if modulus is 0 or 1.
    pub fn new(modulus: T) -> Self {
        assert!(!modulus.is_zero(), "Modulus cannot be 0");
        assert!(!modulus.is_one(), "Modulus cannot be 1");
        Self { modulus }
    }

    /// Returns the modulus for this arithmetic.
    pub fn modulus(&self) -> &T {
        &self.modulus
    }
}

impl<T> ModularArithmetic<T>
where
    T: Copy + PartialEq + NumOps + Unsigned + Zero + One + DoubleWidth,
{
    #[inline]
    fn mul_inner(self, x: T, y: T) -> T {
        let wide = (<T::Wide>::from(x) * <T::Wide>::from(y)) % <T::Wide>::from(self.modulus);
        wide.try_into().ok().unwrap() // `unwrap` is safe by construction
    }

    /// Computes the multiplicative inverse of `value` using the extended Euclid algorithm.
    /// Care is taken to not overflow anywhere.
    fn invert(self, value: T) -> Option<T> {
        let value = value % self.modulus; // Reduce value since this influences speed.
        let mut t = <T::SignedWide>::zero();
        let mut new_t = <T::SignedWide>::one();

        let modulus = <T::SignedWide>::from(self.modulus);
        let mut r = modulus;
        let mut new_r = <T::SignedWide>::from(value);

        while !new_r.is_zero() {
            let quotient = r / new_r;
            t = t - quotient * new_t;
            mem::swap(&mut new_t, &mut t);
            r = r - quotient * new_r;
            mem::swap(&mut new_r, &mut r);
        }

        if r > <T::SignedWide>::one() {
            None // r = gcd(self.modulus, value) > 1
        } else {
            if t.is_negative() {
                t = t + modulus;
            }
            Some(t.try_into().ok().unwrap())
            // ^-- `unwrap` is safe by construction
        }
    }

    fn modular_exp(self, base: T, mut exp: usize) -> T {
        if exp == 0 {
            return T::one();
        }

        let wide_modulus = <T::Wide>::from(self.modulus);
        let mut base = <T::Wide>::from(base % self.modulus);

        while exp & 1 == 0 {
            base = (base * base) % wide_modulus;
            exp >>= 1;
        }
        if exp == 1 {
            return base.try_into().ok().unwrap(); // `unwrap` is safe by construction
        }

        let mut acc = base;
        while exp > 1 {
            exp >>= 1;
            base = (base * base) % wide_modulus;
            if exp & 1 == 1 {
                acc = (acc * base) % wide_modulus;
            }
        }
        acc.try_into().ok().unwrap() // `unwrap` is safe by construction
    }
}

impl<T> Arithmetic<T> for ModularArithmetic<T>
where
    T: Copy + PartialEq + NumOps + Zero + One + DoubleWidth,
    usize: TryFrom<T>,
{
    #[inline]
    fn add(&self, x: T, y: T) -> Result<T, ArithmeticError> {
        let wide = (<T::Wide>::from(x) + <T::Wide>::from(y)) % <T::Wide>::from(self.modulus);
        Ok(wide.try_into().ok().unwrap()) // `unwrap` is safe by construction
    }

    #[inline]
    fn sub(&self, x: T, y: T) -> Result<T, ArithmeticError> {
        let y = y % self.modulus; // Prevent possible overflow in the following subtraction
        self.add(x, self.modulus - y)
    }

    #[inline]
    fn mul(&self, x: T, y: T) -> Result<T, ArithmeticError> {
        Ok(self.mul_inner(x, y))
    }

    #[inline]
    fn div(&self, x: T, y: T) -> Result<T, ArithmeticError> {
        if y.is_zero() {
            Err(ArithmeticError::DivisionByZero)
        } else {
            let y_inv = self.invert(y).ok_or(ArithmeticError::NoInverse)?;
            self.mul(x, y_inv)
        }
    }

    #[inline]
    #[allow(clippy::map_err_ignore)]
    fn pow(&self, x: T, y: T) -> Result<T, ArithmeticError> {
        let exp = usize::try_from(y).map_err(|_| ArithmeticError::InvalidExponent)?;
        Ok(self.modular_exp(x, exp))
    }

    #[inline]
    fn neg(&self, x: T) -> Result<T, ArithmeticError> {
        let x = x % self.modulus; // Prevent possible overflow in the following subtraction
        Ok(self.modulus - x)
    }

    #[inline]
    fn eq(&self, x: &T, y: &T) -> bool {
        *x % self.modulus == *y % self.modulus
    }
}

#[cfg(test)]
static_assertions::assert_impl_all!(ModularArithmetic<u8>: Arithmetic<u8>);
#[cfg(test)]
static_assertions::assert_impl_all!(ModularArithmetic<u16>: Arithmetic<u16>);
#[cfg(test)]
static_assertions::assert_impl_all!(ModularArithmetic<u32>: Arithmetic<u32>);
#[cfg(test)]
static_assertions::assert_impl_all!(ModularArithmetic<u64>: Arithmetic<u64>);

#[cfg(test)]
mod tests {
    use rand::{rngs::StdRng, Rng, SeedableRng};

    use super::*;

    #[test]
    fn modular_arithmetic_basics() {
        let arithmetic = ModularArithmetic::new(11_u32);
        assert_eq!(arithmetic.add(1, 5).unwrap(), 6);
        assert_eq!(arithmetic.add(2, 9).unwrap(), 0);
        assert_eq!(arithmetic.add(5, 9).unwrap(), 3);
        assert_eq!(arithmetic.add(5, 20).unwrap(), 3);

        assert_eq!(arithmetic.sub(5, 9).unwrap(), 7);
        assert_eq!(arithmetic.sub(5, 20).unwrap(), 7);

        assert_eq!(arithmetic.mul(5, 4).unwrap(), 9);
        assert_eq!(arithmetic.mul(11, 4).unwrap(), 0);

        // Check overflows.
        assert_eq!(u32::MAX % 11, 3);
        assert_eq!(arithmetic.mul(u32::MAX, u32::MAX).unwrap(), 9);

        assert_eq!(arithmetic.div(1, 4).unwrap(), 3); // 4 * 3 = 12 = 1 (mod 11)
        assert_eq!(arithmetic.div(2, 4).unwrap(), 6);
        assert_eq!(arithmetic.div(1, 9).unwrap(), 5); // 9 * 5 = 45 = 1 (mod 11)

        assert_eq!(arithmetic.pow(2, 5).unwrap(), 10);
        assert_eq!(arithmetic.pow(3, 10).unwrap(), 1); // by Fermat theorem
        assert_eq!(arithmetic.pow(3, 4).unwrap(), 4);
        assert_eq!(arithmetic.pow(7, 3).unwrap(), 2);
    }

    #[test]
    fn modular_arithmetic_never_overflows() {
        const MODULUS: u8 = 241;

        let arithmetic = ModularArithmetic::new(MODULUS);
        for x in 0..=u8::MAX {
            for y in 0..=u8::MAX {
                let expected = (u16::from(x) + u16::from(y)) % u16::from(MODULUS);
                assert_eq!(u16::from(arithmetic.add(x, y).unwrap()), expected);

                let mut expected = (i16::from(x) - i16::from(y)) % i16::from(MODULUS);
                if expected < 0 {
                    expected += i16::from(MODULUS);
                }
                assert_eq!(i16::from(arithmetic.sub(x, y).unwrap()), expected);

                let expected = (u16::from(x) * u16::from(y)) % u16::from(MODULUS);
                assert_eq!(u16::from(arithmetic.mul(x, y).unwrap()), expected);
            }
        }

        for x in 0..=u8::MAX {
            let inv = arithmetic.invert(x);
            if x % MODULUS == 0 {
                assert!(inv.is_none());
            } else {
                let inv = u16::from(inv.unwrap());
                assert_eq!((inv * u16::from(x)) % u16::from(MODULUS), 1);
            }
        }
    }

    // Takes ~1s in the debug mode.
    const SAMPLE_COUNT: usize = 25_000;

    fn mini_fuzz_for_prime_modulus(modulus: u64) {
        let arithmetic = ModularArithmetic::new(modulus);
        let unsigned_wide_mod = u128::from(modulus);
        let signed_wide_mod = i128::from(modulus);
        let mut rng = StdRng::seed_from_u64(modulus);

        for (x, y) in (0..SAMPLE_COUNT).map(|_| rng.gen::<(u64, u64)>()) {
            let expected = (u128::from(x) + u128::from(y)) % unsigned_wide_mod;
            assert_eq!(u128::from(arithmetic.add(x, y).unwrap()), expected);

            let mut expected = (i128::from(x) - i128::from(y)) % signed_wide_mod;
            if expected < 0 {
                expected += signed_wide_mod;
            }
            assert_eq!(i128::from(arithmetic.sub(x, y).unwrap()), expected);

            let expected = (u128::from(x) * u128::from(y)) % unsigned_wide_mod;
            assert_eq!(u128::from(arithmetic.mul(x, y).unwrap()), expected);
        }

        for x in (0..SAMPLE_COUNT).map(|_| rng.gen::<u64>()) {
            let inv = arithmetic.invert(x);
            if x % modulus == 0 {
                // Quite unlikely, but better be safe than sorry.
                assert!(inv.is_none());
            } else {
                let inv = u128::from(inv.unwrap());
                assert_eq!((inv * u128::from(x)) % unsigned_wide_mod, 1);
            }
        }

        for _ in 0..(SAMPLE_COUNT / 10) {
            let x = rng.gen::<u64>();
            let wide_x = u128::from(x);

            // Check a random small exponent.
            let exp = rng.gen_range(1_u64..1_000);
            let expected_pow = (0..exp).fold(1_u128, |acc, _| (acc * wide_x) % unsigned_wide_mod);
            assert_eq!(u128::from(arithmetic.pow(x, exp).unwrap()), expected_pow);

            if x % modulus != 0 {
                // Check Fermat's little theorem.
                let pow = arithmetic.pow(x, modulus - 1).unwrap();
                assert_eq!(pow, 1);
            }
        }
    }

    #[test]
    fn mini_fuzz_for_small_modulus() {
        mini_fuzz_for_prime_modulus(3);
        mini_fuzz_for_prime_modulus(7);
        mini_fuzz_for_prime_modulus(23);
        mini_fuzz_for_prime_modulus(61);
    }

    #[test]
    fn mini_fuzz_for_u32_modulus() {
        // Primes taken from https://www.numberempire.com/primenumbers.php
        mini_fuzz_for_prime_modulus(3_000_000_019);
        mini_fuzz_for_prime_modulus(3_500_000_011);
        mini_fuzz_for_prime_modulus(4_000_000_007);
    }

    #[test]
    fn mini_fuzz_for_large_u64_modulus() {
        // Primes taken from https://bigprimes.org/
        mini_fuzz_for_prime_modulus(2_594_642_710_891_962_701);
        mini_fuzz_for_prime_modulus(5_647_618_287_156_850_721);
        mini_fuzz_for_prime_modulus(9_223_372_036_854_775_837);
        mini_fuzz_for_prime_modulus(10_902_486_311_044_492_273);
    }
}