1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264
//! [`ExecutableModule`] and related types.
use core::fmt;
use arithmetic_parser::{grammars::Grammar, Block};
pub use self::module_id::{IndexedId, ModuleId, WildcardId};
pub(crate) use self::{
command::{Atom, Command, CompiledExpr, FieldName, LocatedAtom},
registers::{Executable, ExecutableFn, Operations, Registers},
};
pub use crate::compiler::CompilerExt;
use crate::{
alloc::Arc,
compiler::{Captures, Compiler},
env::Environment,
error::{Backtrace, Error, ErrorKind, ErrorWithBacktrace},
Value,
};
mod command;
mod module_id;
mod registers;
/// Executable module together with its imports.
///
/// An `ExecutableModule` is a result of compiling a `Block` of statements. A module can *import*
/// [`Value`]s, such as [commonly used functions](crate::fns). Importing is performed
/// when building the module.
///
/// After the module is created, it can be associated with an environment via [`Self::with_env()`]
/// and [`run`](WithEnvironment::run()).
/// If the last statement of the block is an expression (that is, not terminated with a `;`),
/// it is the result of the execution; otherwise, the result is [`Value::void()`].
///
/// In some cases (e.g., when building a REPL) it is useful to get not only the outcome
/// of the module execution, but the intermediate results as well. Use [`Self::with_mutable_env()`]
/// for such cases.
///
/// `ExecutableModule`s are generic with respect to the primitive value type, just like [`Value`].
///
/// # Examples
///
/// ## Basic usage
///
/// ```
/// use arithmetic_parser::grammars::{F32Grammar, Parse, Untyped};
/// use arithmetic_eval::{env, fns, Environment, ExecutableModule, Value};
/// # use std::collections::HashSet;
///
/// # fn main() -> anyhow::Result<()> {
/// let module = Untyped::<F32Grammar>::parse_statements(
/// "xs.fold(-INFINITY, max)",
/// )?;
/// let module = ExecutableModule::new("test", &module)?;
///
/// let mut env = Environment::new();
/// env.insert("INFINITY", Value::Prim(f32::INFINITY))
/// .insert("xs", Value::void())
/// .extend(env::Prelude::iter().chain(env::Comparisons::iter()));
///
/// // With the original imports, the returned value is `-INFINITY`.
/// assert_eq!(module.with_env(&env)?.run()?, Value::Prim(f32::NEG_INFINITY));
///
/// // Imports can be changed. Let's check that `xs` is indeed an import.
/// assert!(module.is_import("xs"));
/// // It's possible to iterate over imports, too.
/// let imports = module.import_names().collect::<HashSet<_>>();
/// assert!(imports.is_superset(&HashSet::from_iter(vec!["max", "fold"])));
/// # drop(imports); // necessary to please the borrow checker
///
/// // Change the `xs` import and run the module again.
/// let array = [1.0, -3.0, 2.0, 0.5].iter().copied()
/// .map(Value::Prim)
/// .collect();
/// env.insert("xs", Value::Tuple(array));
/// assert_eq!(module.with_env(&env)?.run()?, Value::Prim(2.0));
/// # Ok(())
/// # }
/// ```
///
/// ## Reusing a module
///
/// The same module can be run with multiple imports:
///
/// ```
/// # use arithmetic_parser::grammars::{F32Grammar, Parse, Untyped};
/// # use arithmetic_eval::{Environment, ExecutableModule, Value};
/// # fn main() -> anyhow::Result<()> {
/// let block = Untyped::<F32Grammar>::parse_statements("x + y")?;
/// let module = ExecutableModule::new("test", &block)?;
///
/// let mut env = Environment::new();
/// env.insert("x", Value::Prim(3.0)).insert("y", Value::Prim(5.0));
/// assert_eq!(module.with_env(&env)?.run()?, Value::Prim(8.0));
///
/// env.insert("x", Value::Prim(-1.0));
/// assert_eq!(module.with_env(&env)?.run()?, Value::Prim(4.0));
/// # Ok(())
/// # }
/// ```
///
/// ## Behavior on errors
///
/// [`Self::with_mutable_env()`] modifies the environment even if an error occurs during execution:
///
/// ```
/// # use arithmetic_parser::grammars::{F32Grammar, Parse, Untyped};
/// # use arithmetic_eval::{env::Assertions, Environment, ExecutableModule, Value};
/// # fn main() -> anyhow::Result<()> {
/// let module = Untyped::<F32Grammar>::parse_statements("x = 5; assert_eq(x, 4);")?;
/// let module = ExecutableModule::new("test", &module)?;
///
/// let mut env = Environment::new();
/// env.extend(Assertions::iter());
/// assert!(module.with_mutable_env(&mut env)?.run().is_err());
/// assert_eq!(env["x"], Value::Prim(5.0));
/// # Ok(())
/// # }
/// ```
#[derive(Debug, Clone)]
pub struct ExecutableModule<T> {
inner: Executable<T>,
captures: Captures,
}
#[cfg(test)]
static_assertions::assert_impl_all!(ExecutableModule<f32>: Send, Sync);
impl<T: Clone + fmt::Debug> ExecutableModule<T> {
/// Creates a new module.
pub fn new<G, Id>(id: Id, block: &Block<'_, G>) -> Result<Self, Error>
where
Id: ModuleId,
G: Grammar<Lit = T>,
{
Compiler::compile_module(id, block)
}
}
impl<T> ExecutableModule<T> {
pub(crate) fn from_parts(inner: Executable<T>, captures: Captures) -> Self {
Self { inner, captures }
}
/// Gets the identifier of this module.
pub fn id(&self) -> &Arc<dyn ModuleId> {
self.inner.id()
}
/// Returns a shared reference to imports of this module.
pub fn import_names(&self) -> impl Iterator<Item = &str> + '_ {
self.captures.iter().map(|(name, _)| name)
}
/// Checks if the specified variable is an import.
pub fn is_import(&self, name: &str) -> bool {
self.captures.contains(name)
}
/// Combines this module with the specified [`Environment`]. The environment must contain
/// all module imports; otherwise, an error will be raised.
///
/// # Errors
///
/// Returns an error if the environment does not contain all variables imported by this module.
pub fn with_env<'s>(
&'s self,
env: &'s Environment<T>,
) -> Result<WithEnvironment<'s, T>, Error> {
self.check_imports(env)?;
Ok(WithEnvironment {
module: self,
env: Reference::Shared(env),
})
}
fn check_imports(&self, env: &Environment<T>) -> Result<(), Error> {
for (name, span) in self.captures.iter() {
if !env.contains(name) {
let err = ErrorKind::Undefined(name.into());
return Err(Error::new(self.inner.id().clone(), span, err));
}
}
Ok(())
}
/// Analogue of [`Self::with_env()`] that modifies the provided [`Environment`]
/// when the module is [run](WithEnvironment::run()).
///
/// # Errors
///
/// Returns an error if the environment does not contain all variables imported by this module.
pub fn with_mutable_env<'s>(
&'s self,
env: &'s mut Environment<T>,
) -> Result<WithEnvironment<'s, T>, Error> {
self.check_imports(env)?;
Ok(WithEnvironment {
module: self,
env: Reference::Mutable(env),
})
}
}
impl<T: 'static + Clone> ExecutableModule<T> {
fn run_with_registers(
&self,
registers: &mut Registers<T>,
operations: Operations<'_, T>,
) -> Result<Value<T>, ErrorWithBacktrace> {
let mut backtrace = Backtrace::default();
registers
.execute(&self.inner, operations, Some(&mut backtrace))
.map_err(|err| ErrorWithBacktrace::new(err, backtrace))
}
}
#[derive(Debug)]
enum Reference<'a, T> {
Shared(&'a T),
Mutable(&'a mut T),
}
impl<T> AsRef<T> for Reference<'_, T> {
fn as_ref(&self) -> &T {
match self {
Self::Shared(shared) => shared,
Self::Mutable(mutable) => mutable,
}
}
}
/// Container for an [`ExecutableModule`] together with an [`Environment`].
#[derive(Debug)]
pub struct WithEnvironment<'env, T> {
module: &'env ExecutableModule<T>,
env: Reference<'env, Environment<T>>,
}
impl<T: 'static + Clone> WithEnvironment<'_, T> {
/// Runs the module in the previously provided [`Environment`].
///
/// If a mutable reference was provided to the environment, the environment is modified
/// to reflect top-level assignments in the module (both new and reassigned variables).
/// If an error occurs, the assignments are performed up until the error (i.e., the environment
/// is **not** rolled back on error).
///
/// # Errors
///
/// Returns an error if module execution fails.
pub fn run(self) -> Result<Value<T>, ErrorWithBacktrace> {
let mut registers = Registers::from(&self.module.captures);
registers.update_from_env(self.env.as_ref());
let result = self
.module
.run_with_registers(&mut registers, self.env.as_ref().operations());
if let Reference::Mutable(env) = self.env {
registers.update_env(env);
}
result
}
}