1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
//! Wrapper for eloquent `NativeFn` definitions.

use core::{fmt, marker::PhantomData};

use crate::{
    alloc::Vec, error::AuxErrorInfo, CallContext, ErrorKind, EvalResult, NativeFn, SpannedValue,
};

mod traits;

pub use self::traits::{
    ErrorOutput, FromValueError, FromValueErrorKind, FromValueErrorLocation, IntoEvalResult,
    TryFromValue,
};

/// Wraps a function enriching it with the information about its arguments.
/// This is a slightly shorter way to create wrappers compared to calling [`FnWrapper::new()`].
///
/// See [`FnWrapper`] for more details on function requirements.
pub const fn wrap<const CTX: bool, T, F>(function: F) -> FnWrapper<T, F, CTX> {
    FnWrapper::new(function)
}

/// Wrapper of a function containing information about its arguments.
///
/// Using `FnWrapper` allows to define [native functions](NativeFn) with minimum boilerplate
/// and with increased type safety. `FnWrapper`s can be constructed explicitly or indirectly
/// via [`Environment::insert_wrapped_fn()`], [`Value::wrapped_fn()`], or [`wrap()`].
///
/// Arguments of a wrapped function must implement [`TryFromValue`] trait for the applicable
/// grammar, and the output type must implement [`IntoEvalResult`]. If you need [`CallContext`] (e.g.,
/// to call functions provided as an argument), it should be specified as a first argument.
///
/// [`Environment::insert_wrapped_fn()`]: crate::Environment::insert_wrapped_fn()
/// [`Value::wrapped_fn()`]: crate::Value::wrapped_fn()
///
/// # Examples
///
/// ## Basic function
///
/// ```
/// # use arithmetic_parser::grammars::{F32Grammar, Parse, Untyped};
/// use arithmetic_eval::{fns, Environment, ExecutableModule, Value};
///
/// # fn main() -> anyhow::Result<()> {
/// let max = fns::wrap(|x: f32, y: f32| if x > y { x } else { y });
///
/// let program = "max(1, 3) == 3 && max(-1, -3) == -1";
/// let program = Untyped::<F32Grammar>::parse_statements(program)?;
/// let module = ExecutableModule::new("test_max", &program)?;
///
/// let mut env = Environment::new();
/// env.insert_native_fn("max", max);
/// assert_eq!(module.with_env(&env)?.run()?, Value::Bool(true));
/// # Ok(())
/// # }
/// ```
///
/// ## Fallible function with complex args
///
/// ```
/// # use arithmetic_parser::grammars::{F32Grammar, Parse, Untyped};
/// # use arithmetic_eval::{fns::FnWrapper, Environment, ExecutableModule, Value};
/// fn zip_arrays(xs: Vec<f32>, ys: Vec<f32>) -> Result<Vec<(f32, f32)>, String> {
///     if xs.len() == ys.len() {
///         Ok(xs.into_iter().zip(ys).map(|(x, y)| (x, y)).collect())
///     } else {
///         Err("Arrays must have the same size".to_owned())
///     }
/// }
///
/// # fn main() -> anyhow::Result<()> {
/// let program = "zip((1, 2, 3), (4, 5, 6)) == ((1, 4), (2, 5), (3, 6))";
/// let program = Untyped::<F32Grammar>::parse_statements(program)?;
/// let module = ExecutableModule::new("test_zip", &program)?;
///
/// let mut env = Environment::new();
/// env.insert_wrapped_fn("zip", zip_arrays);
/// assert_eq!(module.with_env(&env)?.run()?, Value::Bool(true));
/// # Ok(())
/// # }
/// ```
///
/// ## Using `CallContext` to call functions
///
/// ```
/// # use arithmetic_parser::grammars::{F32Grammar, Parse, Untyped};
/// # use arithmetic_eval::{CallContext, Function, Environment, Value, ExecutableModule, Error};
/// fn map_array(
///     context: &mut CallContext<'_, f32>,
///     array: Vec<Value<f32>>,
///     map_fn: Function<f32>,
/// ) -> Result<Vec<Value<f32>>, Error> {
///     array
///         .into_iter()
///         .map(|value| {
///             let arg = context.apply_call_location(value);
///             map_fn.evaluate(vec![arg], context)
///         })
///         .collect()
/// }
///
/// # fn main() -> anyhow::Result<()> {
/// let program = "map((1, 2, 3), |x| x + 3) == (4, 5, 6)";
/// let module = Untyped::<F32Grammar>::parse_statements(program)?;
/// let module = ExecutableModule::new("test", &module)?;
///
/// let mut env = Environment::new();
/// env.insert_wrapped_fn("map", map_array);
/// assert_eq!(module.with_env(&env)?.run()?, Value::Bool(true));
/// # Ok(())
/// # }
/// ```
pub struct FnWrapper<T, F, const CTX: bool = false> {
    function: F,
    _arg_types: PhantomData<T>,
}

impl<T, F, const CTX: bool> fmt::Debug for FnWrapper<T, F, CTX>
where
    F: fmt::Debug,
{
    fn fmt(&self, formatter: &mut fmt::Formatter<'_>) -> fmt::Result {
        formatter
            .debug_struct("FnWrapper")
            .field("function", &self.function)
            .field("context", &CTX)
            .finish()
    }
}

impl<T, F: Clone, const CTX: bool> Clone for FnWrapper<T, F, CTX> {
    fn clone(&self) -> Self {
        Self {
            function: self.function.clone(),
            _arg_types: PhantomData,
        }
    }
}

impl<T, F: Copy, const CTX: bool> Copy for FnWrapper<T, F, CTX> {}

// Ideally, we would want to constrain `T` and `F`, but this would make it impossible to declare
// the constructor as `const fn`; see https://github.com/rust-lang/rust/issues/57563.
impl<T, F, const CTX: bool> FnWrapper<T, F, CTX> {
    /// Creates a new wrapper.
    ///
    /// Note that the created wrapper is not guaranteed to be usable as [`NativeFn`]. For this
    /// to be the case, `function` needs to be a function or an [`Fn`] closure,
    /// and the `T` type argument needs to be a tuple with the function return type
    /// and the argument types (in this order).
    pub const fn new(function: F) -> Self {
        Self {
            function,
            _arg_types: PhantomData,
        }
    }
}

macro_rules! arity_fn {
    ($arity:tt, $with_ctx:tt $(, $ctx_name:ident : $ctx_t:ty)? => $($arg_name:ident : $t:ident),*) => {
        impl<Num, F, Ret, $($t,)*> NativeFn<Num> for FnWrapper<(Ret, $($t,)*), F, $with_ctx>
        where
            F: Fn($($ctx_t,)? $($t,)*) -> Ret,
            $($t: TryFromValue<Num>,)*
            Ret: IntoEvalResult<Num>,
        {
            #[allow(clippy::shadow_unrelated)] // makes it easier to write macro
            #[allow(unused_variables, unused_mut)] // `args_iter` is unused for 0-ary functions
            fn evaluate(
                &self,
                args: Vec<SpannedValue<Num>>,
                context: &mut CallContext<'_, Num>,
            ) -> EvalResult<Num> {
                context.check_args_count(&args, $arity)?;
                let mut args_iter = args.into_iter().enumerate();

                $(
                    let (index, $arg_name) = args_iter.next().unwrap();
                    let span = $arg_name.with_no_extra();
                    let $arg_name = $t::try_from_value($arg_name.extra).map_err(|mut err| {
                        err.set_arg_index(index);
                        context
                            .call_site_error(ErrorKind::Wrapper(err))
                            .with_location(&span, AuxErrorInfo::InvalidArg)
                    })?;
                )*

                $(let $ctx_name = &mut *context;)?
                let output = (self.function)($($ctx_name,)? $($arg_name,)*);
                output.into_eval_result().map_err(|err| err.into_spanned(context))
            }
        }
    };
}

arity_fn!(0, false =>);
arity_fn!(0, true, ctx: &mut CallContext<'_, Num> =>);
arity_fn!(1, false => x0: T);
arity_fn!(1, true, ctx: &mut CallContext<'_, Num> => x0: T);
arity_fn!(2, false => x0: T, x1: U);
arity_fn!(2, true, ctx: &mut CallContext<'_, Num> => x0: T, x1: U);
arity_fn!(3, false => x0: T, x1: U, x2: V);
arity_fn!(3, true, ctx: &mut CallContext<'_, Num> => x0: T, x1: U, x2: V);
arity_fn!(4, false => x0: T, x1: U, x2: V, x3: W);
arity_fn!(4, true, ctx: &mut CallContext<'_, Num> => x0: T, x1: U, x2: V, x3: W);
arity_fn!(5, false => x0: T, x1: U, x2: V, x3: W, x4: X);
arity_fn!(5, true, ctx: &mut CallContext<'_, Num> => x0: T, x1: U, x2: V, x3: W, x4: X);
arity_fn!(6, false => x0: T, x1: U, x2: V, x3: W, x4: X, x5: Y);
arity_fn!(6, true, ctx: &mut CallContext<'_, Num> => x0: T, x1: U, x2: V, x3: W, x4: X, x5: Y);
arity_fn!(7, false => x0: T, x1: U, x2: V, x3: W, x4: X, x5: Y, x6: Z);
arity_fn!(7, true, ctx: &mut CallContext<'_, Num> => x0: T, x1: U, x2: V, x3: W, x4: X, x5: Y, x6: Z);
arity_fn!(8, false => x0: T, x1: U, x2: V, x3: W, x4: X, x5: Y, x6: Z, x7: A);
arity_fn!(8, true, ctx: &mut CallContext<'_, Num> => x0: T, x1: U, x2: V, x3: W, x4: X, x5: Y, x6: Z, x7: A);
arity_fn!(9, false => x0: T, x1: U, x2: V, x3: W, x4: X, x5: Y, x6: Z, x7: A, x8: B);
arity_fn!(9, true, ctx: &mut CallContext<'_, Num> => x0: T, x1: U, x2: V, x3: W, x4: X, x5: Y, x6: Z, x7: A, x8: B);
arity_fn!(10, false => x0: T, x1: U, x2: V, x3: W, x4: X, x5: Y, x6: Z, x7: A, x8: B, x9: C);
arity_fn!(10, true, ctx: &mut CallContext<'_, Num> => x0: T, x1: U, x2: V, x3: W, x4: X, x5: Y, x6: Z, x7: A, x8: B, x9: C);

/// Unary function wrapper.
pub type Unary<T> = FnWrapper<(T, T), fn(T) -> T>;

/// Binary function wrapper.
pub type Binary<T> = FnWrapper<(T, T, T), fn(T, T) -> T>;

/// Ternary function wrapper.
pub type Ternary<T> = FnWrapper<(T, T, T, T), fn(T, T, T) -> T>;

/// Quaternary function wrapper.
pub type Quaternary<T> = FnWrapper<(T, T, T, T, T), fn(T, T, T, T) -> T>;

#[cfg(test)]
mod tests {
    use super::*;
    use crate::{
        alloc::{format, ToOwned},
        env::{Environment, Prelude},
        exec::{ExecutableModule, WildcardId},
        Function, Object, Tuple, Value,
    };

    use arithmetic_parser::grammars::{F32Grammar, Parse, Untyped};
    use assert_matches::assert_matches;

    #[test]
    fn functions_with_primitive_args() -> anyhow::Result<()> {
        let unary_fn = Unary::new(|x: f32| x + 3.0);
        let binary_fn = Binary::new(f32::min);
        let ternary_fn = Ternary::new(|x: f32, y, z| if x > 0.0 { y } else { z });

        let program = "
            unary_fn(2) == 5 && binary_fn(1, -3) == -3 &&
                ternary_fn(1, 2, 3) == 2 && ternary_fn(-1, 2, 3) == 3
        ";
        let block = Untyped::<F32Grammar>::parse_statements(program)?;
        let module = ExecutableModule::new(WildcardId, &block)?;

        let mut env = Environment::new();
        env.insert_native_fn("unary_fn", unary_fn)
            .insert_native_fn("binary_fn", binary_fn)
            .insert_native_fn("ternary_fn", ternary_fn);

        assert_eq!(module.with_env(&env)?.run()?, Value::Bool(true));
        Ok(())
    }

    fn array_min_max(values: Vec<f32>) -> (f32, f32) {
        let mut min = f32::INFINITY;
        let mut max = f32::NEG_INFINITY;

        for value in values {
            if value < min {
                min = value;
            }
            if value > max {
                max = value;
            }
        }
        (min, max)
    }

    fn overly_convoluted_fn(xs: Vec<(f32, f32)>, ys: (Vec<f32>, f32)) -> f32 {
        xs.into_iter().map(|(a, b)| a + b).sum::<f32>() + ys.0.into_iter().sum::<f32>() + ys.1
    }

    #[test]
    fn functions_with_composite_args() -> anyhow::Result<()> {
        let program = "
            array_min_max((1, 5, -3, 2, 1)) == (-3, 5) &&
                total_sum(((1, 2), (3, 4)), ((5, 6, 7), 8)) == 36
        ";
        let block = Untyped::<F32Grammar>::parse_statements(program)?;
        let module = ExecutableModule::new(WildcardId, &block)?;

        let mut env = Environment::new();
        env.insert_wrapped_fn("array_min_max", array_min_max)
            .insert_wrapped_fn("total_sum", overly_convoluted_fn);

        assert_eq!(module.with_env(&env)?.run()?, Value::Bool(true));
        Ok(())
    }

    fn sum_arrays(xs: Vec<f32>, ys: Vec<f32>) -> Result<Vec<f32>, String> {
        if xs.len() == ys.len() {
            Ok(xs.into_iter().zip(ys).map(|(x, y)| x + y).collect())
        } else {
            Err("Summed arrays must have the same size".to_owned())
        }
    }

    #[test]
    fn fallible_function() -> anyhow::Result<()> {
        let program = "sum_arrays((1, 2, 3), (4, 5, 6)) == (5, 7, 9)";
        let block = Untyped::<F32Grammar>::parse_statements(program)?;
        let module = ExecutableModule::new(WildcardId, &block)?;

        let mut env = Environment::new();
        env.insert_wrapped_fn("sum_arrays", sum_arrays);
        assert_eq!(module.with_env(&env)?.run()?, Value::Bool(true));
        Ok(())
    }

    #[test]
    fn fallible_function_with_bogus_program() -> anyhow::Result<()> {
        let program = "sum_arrays((1, 2, 3), (4, 5))";
        let block = Untyped::<F32Grammar>::parse_statements(program)?;
        let module = ExecutableModule::new(WildcardId, &block)?;

        let mut env = Environment::new();
        env.insert_wrapped_fn("sum_arrays", sum_arrays);

        let err = module.with_env(&env)?.run().unwrap_err();
        assert!(err
            .source()
            .kind()
            .to_short_string()
            .contains("Summed arrays must have the same size"));
        Ok(())
    }

    #[test]
    fn function_with_bool_return_value() -> anyhow::Result<()> {
        let contains = wrap(|(a, b): (f32, f32), x: f32| (a..=b).contains(&x));

        let program = "contains((-1, 2), 0) && !contains((1, 3), 0)";
        let block = Untyped::<F32Grammar>::parse_statements(program)?;
        let module = ExecutableModule::new(WildcardId, &block)?;

        let mut env = Environment::new();
        env.insert_native_fn("contains", contains);
        assert_eq!(module.with_env(&env)?.run()?, Value::Bool(true));
        Ok(())
    }

    #[test]
    fn function_with_void_return_value() -> anyhow::Result<()> {
        let program = "assert_eq(3, 1 + 2)";
        let block = Untyped::<F32Grammar>::parse_statements(program)?;
        let module = ExecutableModule::new(WildcardId, &block)?;

        let mut env = Environment::new();
        env.insert_wrapped_fn("assert_eq", |expected: f32, actual: f32| {
            if (expected - actual).abs() < f32::EPSILON {
                Ok(())
            } else {
                Err(format!(
                    "Assertion failed: expected {expected}, got {actual}"
                ))
            }
        });

        assert!(module.with_env(&env)?.run()?.is_void());

        let bogus_program = "assert_eq(3, 1 - 2)";
        let bogus_block = Untyped::<F32Grammar>::parse_statements(bogus_program)?;
        let err = ExecutableModule::new(WildcardId, &bogus_block)?
            .with_env(&env)?
            .run()
            .unwrap_err();

        assert_matches!(
            err.source().kind(),
            ErrorKind::NativeCall(ref msg) if msg.contains("Assertion failed")
        );
        Ok(())
    }

    #[test]
    fn function_with_bool_argument() -> anyhow::Result<()> {
        let program = "flip_sign(-1, true) == 1 && flip_sign(-1, false) == -1";
        let block = Untyped::<F32Grammar>::parse_statements(program)?;
        let module = ExecutableModule::new(WildcardId, &block)?;

        let mut env = Environment::new();
        env.extend(Prelude::iter());
        env.insert_wrapped_fn(
            "flip_sign",
            |val: f32, flag: bool| if flag { -val } else { val },
        );

        assert_eq!(module.with_env(&env)?.run()?, Value::Bool(true));
        Ok(())
    }

    #[test]
    #[allow(clippy::cast_precision_loss)] // fine for this test
    fn function_with_object_and_tuple() -> anyhow::Result<()> {
        fn test_function(tuple: Tuple<f32>) -> Object<f32> {
            let mut obj = Object::default();
            obj.insert("len", Value::Prim(tuple.len() as f32));
            obj.insert("tuple", tuple.into());
            obj
        }

        let program = "
            { len, tuple } = test((1, 1, 1));
            len == 3 && tuple == (1, 1, 1)
        ";
        let block = Untyped::<F32Grammar>::parse_statements(program)?;
        let module = ExecutableModule::new(WildcardId, &block)?;

        let test_function = Value::native_fn(wrap(test_function));
        let mut env = Environment::new();
        env.insert("test", test_function).extend(Prelude::iter());

        assert_eq!(module.with_env(&env)?.run()?, Value::Bool(true));
        Ok(())
    }

    #[test]
    fn error_reporting_with_destructuring() -> anyhow::Result<()> {
        let program = "destructure(((true, 1), (2, 3)))";
        let block = Untyped::<F32Grammar>::parse_statements(program)?;
        let module = ExecutableModule::new(WildcardId, &block)?;

        let mut env = Environment::new();
        env.extend(Prelude::iter());
        env.insert_wrapped_fn("destructure", |values: Vec<(bool, f32)>| {
            values
                .into_iter()
                .map(|(flag, x)| if flag { x } else { 0.0 })
                .sum::<f32>()
        });

        let err = module.with_env(&env)?.run().unwrap_err();
        let err_message = err.source().kind().to_short_string();
        assert!(err_message.contains("Cannot convert primitive value to bool"));
        assert!(err_message.contains("location: arg0[1].0"));
        Ok(())
    }

    #[test]
    fn function_with_context() -> anyhow::Result<()> {
        #[allow(clippy::needless_pass_by_value)] // required for wrapping to work
        fn call(
            ctx: &mut CallContext<'_, f32>,
            func: Function<f32>,
            value: f32,
        ) -> EvalResult<f32> {
            let args = vec![ctx.apply_call_location(Value::Prim(value))];
            func.evaluate(args, ctx)
        }

        let program = "(|x| { x + 1 }).call(1)";
        let block = Untyped::<F32Grammar>::parse_statements(program)?;
        let module = ExecutableModule::new(WildcardId, &block)?;

        let mut env = Environment::new();
        env.insert_wrapped_fn("call", call);
        assert_eq!(module.with_env(&env)?.run()?, Value::Prim(2.0));
        Ok(())
    }
}