1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293
//! `Expr` and tightly related types.
use core::fmt;
use super::{Block, FnDefinition, ObjectExpr};
use crate::{
alloc::{Box, Vec},
grammars::Grammar,
ops::{BinaryOp, UnaryOp},
spans::Spanned,
};
/// Arithmetic expression with an abstract types for type annotations and literals.
#[derive(Debug)]
#[non_exhaustive]
pub enum Expr<'a, T: Grammar> {
/// Variable use, e.g., `x`.
Variable,
/// Literal (semantic depends on `T`).
Literal(T::Lit),
/// Function definition, e.g., `|x, y| { x + y }`.
FnDefinition(FnDefinition<'a, T>),
/// Type cast, e.g., `x as Bool`.
TypeCast {
/// Value being cast, e.g., `x` in `x as Bool`.
value: Box<SpannedExpr<'a, T>>,
/// Type annotation for the case, e.g., `Bool` in `x as Bool`.
ty: Spanned<'a, T::Type<'a>>,
},
/// Function call, e.g., `foo(x, y)` or `|x| { x + 5 }(3)`.
Function {
/// Function value. In the simplest case, this is a variable, but may also be another
/// kind of expression, such as `|x| { x + 5 }` in `|x| { x + 5 }(3)`.
name: Box<SpannedExpr<'a, T>>,
/// Function arguments.
args: Vec<SpannedExpr<'a, T>>,
},
/// Field access, e.g., `foo.bar`.
FieldAccess {
/// Name of the called method, e.g. `bar` in `foo.bar`.
name: Box<SpannedExpr<'a, T>>,
/// Receiver of the call, e.g., `foo` in `foo.bar(x, 5)`.
receiver: Box<SpannedExpr<'a, T>>,
},
/// Method call, e.g., `foo.bar(x, 5)`.
Method {
/// Name of the called method, e.g. `bar` in `foo.bar(x, 5)`.
name: Box<SpannedExpr<'a, T>>,
/// Receiver of the call, e.g., `foo` in `foo.bar(x, 5)`.
receiver: Box<SpannedExpr<'a, T>>,
/// Separator between the receiver and the called method, e.g., `.` in `foo.bar(x, 5)`.
separator: Spanned<'a>,
/// Arguments; e.g., `x, 5` in `foo.bar(x, 5)`.
args: Vec<SpannedExpr<'a, T>>,
},
/// Unary operation, e.g., `-x`.
Unary {
/// Operator.
op: Spanned<'a, UnaryOp>,
/// Inner expression.
inner: Box<SpannedExpr<'a, T>>,
},
/// Binary operation, e.g., `x + 1`.
Binary {
/// LHS of the operation.
lhs: Box<SpannedExpr<'a, T>>,
/// Operator.
op: Spanned<'a, BinaryOp>,
/// RHS of the operation.
rhs: Box<SpannedExpr<'a, T>>,
},
/// Tuple expression, e.g., `(x, y + z)`.
Tuple(Vec<SpannedExpr<'a, T>>),
/// Block expression, e.g., `{ x = 3; x + y }`.
Block(Block<'a, T>),
/// Object expression, e.g., `#{ x, y: x + 2 }`.
Object(ObjectExpr<'a, T>),
}
impl<'a, T: Grammar> Expr<'a, T> {
/// Returns LHS of the binary expression. If this is not a binary expression, returns `None`.
pub fn binary_lhs(&self) -> Option<&SpannedExpr<'a, T>> {
match self {
Expr::Binary { ref lhs, .. } => Some(lhs),
_ => None,
}
}
/// Returns RHS of the binary expression. If this is not a binary expression, returns `None`.
pub fn binary_rhs(&self) -> Option<&SpannedExpr<'a, T>> {
match self {
Expr::Binary { ref rhs, .. } => Some(rhs),
_ => None,
}
}
/// Returns the type of this expression.
pub fn ty(&self) -> ExprType {
match self {
Self::Variable => ExprType::Variable,
Self::Literal(_) => ExprType::Literal,
Self::FnDefinition(_) => ExprType::FnDefinition,
Self::TypeCast { .. } => ExprType::Cast,
Self::Tuple(_) => ExprType::Tuple,
Self::Object(_) => ExprType::Object,
Self::Block(_) => ExprType::Block,
Self::Function { .. } => ExprType::Function,
Self::FieldAccess { .. } => ExprType::FieldAccess,
Self::Method { .. } => ExprType::Method,
Self::Unary { .. } => ExprType::Unary,
Self::Binary { .. } => ExprType::Binary,
}
}
}
impl<'a, T: Grammar> Clone for Expr<'a, T> {
fn clone(&self) -> Self {
match self {
Self::Variable => Self::Variable,
Self::Literal(lit) => Self::Literal(lit.clone()),
Self::FnDefinition(function) => Self::FnDefinition(function.clone()),
Self::TypeCast { value, ty } => Self::TypeCast {
value: value.clone(),
ty: ty.clone(),
},
Self::Tuple(tuple) => Self::Tuple(tuple.clone()),
Self::Object(statements) => Self::Object(statements.clone()),
Self::Block(block) => Self::Block(block.clone()),
Self::Function { name, args } => Self::Function {
name: name.clone(),
args: args.clone(),
},
Self::FieldAccess { name, receiver } => Self::FieldAccess {
name: name.clone(),
receiver: receiver.clone(),
},
Self::Method {
name,
receiver,
separator,
args,
} => Self::Method {
name: name.clone(),
receiver: receiver.clone(),
separator: *separator,
args: args.clone(),
},
Self::Unary { op, inner } => Self::Unary {
op: *op,
inner: inner.clone(),
},
Self::Binary { op, lhs, rhs } => Self::Binary {
op: *op,
lhs: lhs.clone(),
rhs: rhs.clone(),
},
}
}
}
impl<'a, T> PartialEq for Expr<'a, T>
where
T: Grammar,
T::Lit: PartialEq,
T::Type<'a>: PartialEq,
{
fn eq(&self, other: &Self) -> bool {
match (self, other) {
(Self::Variable, Self::Variable) => true,
(Self::Literal(this), Self::Literal(that)) => this == that,
(Self::FnDefinition(this), Self::FnDefinition(that)) => this == that,
(
Self::TypeCast { value, ty },
Self::TypeCast {
value: other_value,
ty: other_ty,
},
) => value == other_value && ty == other_ty,
(Self::Tuple(this), Self::Tuple(that)) => this == that,
(Self::Object(this), Self::Object(that)) => this == that,
(Self::Block(this), Self::Block(that)) => this == that,
(
Self::Function { name, args },
Self::Function {
name: that_name,
args: that_args,
},
) => name == that_name && args == that_args,
(
Self::FieldAccess { name, receiver },
Self::FieldAccess {
name: that_name,
receiver: that_receiver,
},
) => name == that_name && receiver == that_receiver,
(
Self::Method {
name,
receiver,
separator,
args,
},
Self::Method {
name: that_name,
receiver: that_receiver,
separator: that_separator,
args: that_args,
},
) => {
name == that_name
&& receiver == that_receiver
&& args == that_args
&& separator == that_separator
}
(
Self::Unary { op, inner },
Self::Unary {
op: that_op,
inner: that_inner,
},
) => op == that_op && inner == that_inner,
(
Self::Binary { lhs, op, rhs },
Self::Binary {
lhs: that_lhs,
op: that_op,
rhs: that_rhs,
},
) => op == that_op && lhs == that_lhs && rhs == that_rhs,
_ => false,
}
}
}
/// `Expr` with the associated type and code span.
pub type SpannedExpr<'a, T> = Spanned<'a, Expr<'a, T>>;
/// Type of an `Expr`.
#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
#[non_exhaustive]
pub enum ExprType {
/// Variable use, e.g., `x`.
Variable,
/// Literal (semantic depends on the grammar).
Literal,
/// Function definition, e.g., `|x, y| { x + y }`.
FnDefinition,
/// Cast, e.g., `x as Bool`.
Cast,
/// Function call, e.g., `foo(x, y)` or `|x| { x + 5 }(3)`.
Function,
/// Field access, e.g., `foo.bar`.
FieldAccess,
/// Method call, e.g., `foo.bar(x, 5)`.
Method,
/// Unary operation, e.g., `-x`.
Unary,
/// Binary operation, e.g., `x + 1`.
Binary,
/// Tuple expression, e.g., `(x, y + z)`.
Tuple,
/// Object expression, e.g., `#{ x = 1; y = x + 2; }`.
Object,
/// Block expression, e.g., `{ x = 3; x + y }`.
Block,
}
impl fmt::Display for ExprType {
fn fmt(&self, formatter: &mut fmt::Formatter<'_>) -> fmt::Result {
formatter.write_str(match self {
Self::Variable => "variable",
Self::Literal => "literal",
Self::FnDefinition => "function definition",
Self::Cast => "type cast",
Self::Function => "function call",
Self::FieldAccess => "field access",
Self::Method => "method call",
Self::Unary => "unary operation",
Self::Binary => "binary operation",
Self::Tuple => "tuple",
Self::Object => "object",
Self::Block => "block",
})
}
}