1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400
use core::{fmt, marker::PhantomData};
use anyhow::anyhow;
use bitflags::bitflags;
use nom::Err as NomErr;
use crate::{
parser::{statements, streaming_statements},
Block, Error, ErrorKind, InputSpan, NomResult,
};
bitflags! {
/// Parsing features used to configure [`Parse`] implementations.
#[derive(Debug, Clone, Copy)]
pub struct Features: u64 {
/// Enables parsing tuples.
const TUPLES = 1;
/// Enables parsing type annotations.
const TYPE_ANNOTATIONS = 2;
/// Enables parsing function definitions.
const FN_DEFINITIONS = 4;
/// Enables parsing blocks.
const BLOCKS = 8;
/// Enables parsing methods.
const METHODS = 16;
/// Enables parsing equality comparisons (`==`, `!=`), the `!` unary op and
/// `&&`, `||` binary ops.
const BOOLEAN_OPS_BASIC = 32;
/// Enables parsing order comparisons (`>`, `<`, `>=`, `<=`).
const ORDER_COMPARISONS = 64;
/// Enables parsing objects.
const OBJECTS = 128;
/// Enables all Boolean operations.
const BOOLEAN_OPS = Self::BOOLEAN_OPS_BASIC.bits() | Self::ORDER_COMPARISONS.bits();
}
}
impl Features {
/// Creates a copy of these `Features` without any of the flags in `other`.
#[must_use]
pub const fn without(self, other: Self) -> Self {
Self::from_bits_truncate(self.bits() & !other.bits())
}
}
/// Encapsulates parsing literals in a grammar.
///
/// # Examples
///
/// If your grammar does not need to support type annotations, you can define a `ParseLiteral` impl
/// and wrap it into [`Untyped`] to get a [`Grammar`] / [`Parse`]:
///
/// ```
/// use arithmetic_parser::{
/// grammars::{Features, ParseLiteral, Parse, Untyped},
/// ErrorKind, InputSpan, NomResult,
/// };
///
/// /// Grammar that parses `u64` numbers.
/// #[derive(Debug)]
/// struct IntegerGrammar;
///
/// impl ParseLiteral for IntegerGrammar {
/// type Lit = u64;
///
/// // We use the `nom` crate to construct necessary parsers.
/// fn parse_literal(input: InputSpan<'_>) -> NomResult<'_, Self::Lit> {
/// use nom::{character::complete::digit1, combinator::map_res};
/// let parser = |s: InputSpan<'_>| {
/// s.fragment().parse().map_err(ErrorKind::literal)
/// };
/// map_res(digit1, parser)(input)
/// }
/// }
///
/// // Here's how a grammar can be used.
/// # fn main() -> anyhow::Result<()> {
/// let program = "
/// x = 1 + 2 * 3 + sin(a^3 / b^2);
/// some_function = |a, b| (a + b, a - b);
/// other_function = |x| {
/// r = min(rand(), 0);
/// r * x
/// };
/// (y, z) = some_function({ x = x - 1; x }, x);
/// other_function(y - z)
/// ";
/// let parsed = Untyped::<IntegerGrammar>::parse_statements(program)?;
/// println!("{:#?}", parsed);
/// # Ok(())
/// # }
/// ```
pub trait ParseLiteral: 'static {
/// Type of the literal used in the grammar.
type Lit: Clone + fmt::Debug;
/// Attempts to parse a literal.
///
/// Literals should follow these rules:
///
/// - A literal must be distinguished from other constructs, in particular,
/// variable identifiers.
/// - If a literal may end with `.` and methods are enabled in [`Parse::FEATURES`],
/// care should be taken for cases when `.` is a part of a call, rather than a part
/// of a literal. For example, a parser for real-valued literals should interpret `1.abs()`
/// as a call of the `abs` method on receiver `1`, rather than `1.` followed by
/// ineligible `abs()`.
///
/// If a literal may start with `-` or `!` (in general, unary ops), these ops will be
/// consumed as a part of the literal, rather than `Expr::Unary`, *unless* the literal
/// is followed by an eligible higher-priority operation (i.e., a method call) *and*
/// the literal without a preceding unary op is still eligible. That is, if `-1` and `1`
/// are both valid literals, then `-1.abs()` will be parsed as negation applied to `1.abs()`.
/// On the other hand, if `!foo!` is a valid literal, but `foo!` isn't, `!foo!.bar()` will
/// be parsed as method `bar()` called on `!foo!`.
///
/// # Return value
///
/// The output should follow `nom` conventions on errors / failures.
fn parse_literal(input: InputSpan<'_>) -> NomResult<'_, Self::Lit>;
}
/// Extension of `ParseLiteral` that parses type annotations.
///
/// # Examples
///
/// Use a [`Typed`] wrapper to create a parser from the grammar, which will support all
/// parsing [`Features`]:
///
/// ```
/// # use arithmetic_parser::{
/// # grammars::{Features, ParseLiteral, Grammar, Parse, Typed},
/// # ErrorKind, InputSpan, NomResult,
/// # };
/// /// Grammar that parses `u64` numbers and has a single type annotation, `Num`.
/// #[derive(Debug)]
/// struct IntegerGrammar;
///
/// impl ParseLiteral for IntegerGrammar {
/// type Lit = u64;
///
/// fn parse_literal(input: InputSpan<'_>) -> NomResult<'_, Self::Lit> {
/// use nom::{character::complete::digit1, combinator::map_res};
/// let parser = |s: InputSpan<'_>| {
/// s.fragment().parse().map_err(ErrorKind::literal)
/// };
/// map_res(digit1, parser)(input)
/// }
/// }
///
/// #[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
/// struct Num;
///
/// impl Grammar for IntegerGrammar {
/// type Type<'a> = Num;
///
/// fn parse_type(input: InputSpan<'_>) -> NomResult<'_, Self::Type<'_>> {
/// use nom::{bytes::complete::tag, combinator::map};
/// map(tag("Num"), |_| Num)(input)
/// }
/// }
///
/// // Here's how a grammar can be used.
/// # fn main() -> anyhow::Result<()> {
/// let program = "
/// x = 1 + 2 * 3 + sin(a^3 / b^2);
/// some_function = |a, b: Num| (a + b, a - b);
/// other_function = |x| {
/// r = min(rand(), 0);
/// r * x
/// };
/// (y, z: Num) = some_function({ x = x - 1; x }, x);
/// other_function(y - z)
/// ";
/// let parsed = Typed::<IntegerGrammar>::parse_statements(program)?;
/// println!("{:#?}", parsed);
/// # Ok(())
/// # }
/// ```
pub trait Grammar: ParseLiteral {
/// Type of the type annotation used in the grammar. This type may be parametric by the input lifetime.
type Type<'a>: 'a + Clone + fmt::Debug;
/// Attempts to parse a type annotation.
///
/// # Return value
///
/// The output should follow `nom` conventions on errors / failures.
fn parse_type(input: InputSpan<'_>) -> NomResult<'_, Self::Type<'_>>;
}
/// Helper trait allowing `Parse` to accept multiple types as inputs.
pub trait IntoInputSpan<'a> {
/// Converts input into a span.
fn into_input_span(self) -> InputSpan<'a>;
}
impl<'a> IntoInputSpan<'a> for InputSpan<'a> {
fn into_input_span(self) -> InputSpan<'a> {
self
}
}
impl<'a> IntoInputSpan<'a> for &'a str {
fn into_input_span(self) -> InputSpan<'a> {
InputSpan::new(self)
}
}
/// Unites all necessary parsers to form a complete grammar definition.
///
/// The two extension points for a `Grammar` are *literals* and *type annotations*. They are
/// defined via [`Base`](Self::Base) type.
/// A `Grammar` also defines a set of supported [`Features`]. This allows to customize which
/// constructs are parsed.
///
/// Most common sets of `Features` are covered by [`Typed`] and [`Untyped`] wrappers;
/// these types allow to not declare `Parse` impl explicitly. It is still possible
/// to define custom `Parse` implementations, as shown in the example below.
///
/// # Examples
///
/// ```
/// # use arithmetic_parser::{
/// # grammars::{Features, ParseLiteral, Parse, Untyped},
/// # ErrorKind, InputSpan, NomResult,
/// # };
/// #[derive(Debug)]
/// struct IntegerGrammar;
///
/// impl ParseLiteral for IntegerGrammar {
/// // Implementation skipped...
/// # type Lit = u64;
/// # fn parse_literal(input: InputSpan<'_>) -> NomResult<'_, Self::Lit> {
/// # use nom::{character::complete::digit1, combinator::map_res};
/// # let parser = |s: InputSpan<'_>| s.fragment().parse().map_err(ErrorKind::literal);
/// # map_res(digit1, parser)(input)
/// # }
/// }
///
/// impl Parse for IntegerGrammar {
/// type Base = Untyped<Self>;
/// const FEATURES: Features = Features::empty();
/// }
///
/// // Here's how a grammar can be used.
/// # fn main() -> anyhow::Result<()> {
/// let program = "x = 1 + 2 * 3 + sin(a^3 / b^2);";
/// let parsed = IntegerGrammar::parse_statements(program)?;
/// println!("{:#?}", parsed);
/// # Ok(())
/// # }
/// ```
pub trait Parse {
/// Base for the grammar providing the literal and type annotation parsers.
type Base: Grammar;
/// Features supported by this grammar.
const FEATURES: Features;
/// Parses a list of statements.
fn parse_statements<'a, I>(input: I) -> Result<Block<'a, Self::Base>, Error>
where
I: IntoInputSpan<'a>,
Self: Sized,
{
statements::<Self>(input.into_input_span())
}
/// Parses a potentially incomplete list of statements.
fn parse_streaming_statements<'a, I>(input: I) -> Result<Block<'a, Self::Base>, Error>
where
I: IntoInputSpan<'a>,
Self: Sized,
{
streaming_statements::<Self>(input.into_input_span())
}
}
/// Wrapper for [`ParseLiteral`] types that allows to use them as a [`Grammar`] or [`Parse`]r.
///
/// When used as a `Grammar`, type annotations are not supported; any use of an annotation will
/// lead to a parsing error. When used as a `Parse`r, all [`Features`] are on except for
/// type annotations.
///
/// # Examples
///
/// See [`ParseLiteral`] docs for an example of usage.
#[derive(Debug)]
pub struct Untyped<T>(PhantomData<T>);
impl<T: ParseLiteral> ParseLiteral for Untyped<T> {
type Lit = T::Lit;
#[inline]
fn parse_literal(input: InputSpan<'_>) -> NomResult<'_, Self::Lit> {
T::parse_literal(input)
}
}
impl<T: ParseLiteral> Grammar for Untyped<T> {
type Type<'a> = ();
#[inline]
fn parse_type(input: InputSpan<'_>) -> NomResult<'_, Self::Type<'_>> {
let err = anyhow!("Type annotations are not supported by this parser");
let err = Error::new(input, ErrorKind::Type(err));
Err(NomErr::Failure(err))
}
}
impl<T: ParseLiteral> Parse for Untyped<T> {
type Base = Self;
const FEATURES: Features = Features::all().without(Features::TYPE_ANNOTATIONS);
}
/// Wrapper for [`Grammar`] types that allows to convert the type to a [`Parse`]r. The resulting
/// parser supports all [`Features`].
///
/// # Examples
///
/// See [`Grammar`] docs for an example of usage.
#[derive(Debug)]
// TODO: consider name change (`Parser`?)
pub struct Typed<T>(PhantomData<T>);
impl<T: Grammar> Parse for Typed<T> {
type Base = T;
const FEATURES: Features = Features::all();
}
/// Trait allowing to mock out type annotation support together with [`WithMockedTypes`].
/// It specifies recognized type annotations; if any other annotation is used, an error
/// will be raised.
///
/// When used as a [`Parse`]r, all [`Features`] are on.
///
/// # Examples
///
/// ```
/// # use arithmetic_parser::grammars::{F64Grammar, MockTypes, WithMockedTypes};
/// struct MockedTypesList;
///
/// impl MockTypes for MockedTypesList {
/// const MOCKED_TYPES: &'static [&'static str] = &["Num"];
/// }
///
/// // Grammar that recognizes `Num` type annotation.
/// type Grammar = WithMockedTypes<F64Grammar, MockedTypesList>;
/// ```
pub trait MockTypes: 'static {
/// List of mocked type annotations.
const MOCKED_TYPES: &'static [&'static str];
}
/// Decorator for a grammar that mocks type parsing.
///
/// # Examples
///
/// See [`MockTypes`] for examples of usage.
#[derive(Debug)]
pub struct WithMockedTypes<T, Ty>(PhantomData<(T, Ty)>);
impl<T: ParseLiteral, Ty: MockTypes> ParseLiteral for WithMockedTypes<T, Ty> {
type Lit = T::Lit;
fn parse_literal(input: InputSpan<'_>) -> NomResult<'_, Self::Lit> {
T::parse_literal(input)
}
}
impl<T: ParseLiteral, Ty: MockTypes> Grammar for WithMockedTypes<T, Ty> {
type Type<'a> = ();
fn parse_type(input: InputSpan<'_>) -> NomResult<'_, Self::Type<'_>> {
use nom::Slice;
fn type_parser<M: MockTypes>(input: InputSpan<'_>) -> NomResult<'_, ()> {
for &annotation in M::MOCKED_TYPES {
if input.fragment().starts_with(annotation) {
let rest = input.slice(annotation.len()..);
return Ok((rest, ()));
}
}
let err = anyhow!("Unrecognized type annotation");
let err = Error::new(input, ErrorKind::Type(err));
Err(NomErr::Failure(err))
}
type_parser::<Ty>(input)
}
}
impl<T: ParseLiteral, Ty: MockTypes> Parse for WithMockedTypes<T, Ty> {
type Base = Self;
const FEATURES: Features = Features::all();
}