1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171
//! Parser for arithmetic expressions with flexible definition of literals and support
//! of type annotations.
//!
//! Overall, parsed grammars are similar to Rust syntax,
//! [with a few notable differences](#differences-with-rust).
//!
//! # Supported syntax features
//!
//! - **Variables.** A variable name is defined similar to Rust and other programming languages,
//! as a sequence of alphanumeric chars and underscores that does not start with a digit.
//! - **Literals.** The parser for literals is user-provided, thus allowing to apply the library
//! to different domains (e.g., finite group arithmetic).
//! - `//` and `/* .. */` **comments**.
//! - Basic **arithmetic operations**: `+`, `-` (binary and unary), `*`, `/`, `^` (power).
//! The parser outputs AST with nodes organized according to the operation priority.
//! - **Function calls**: `foo(1.0, x)`.
//! - **Parentheses** which predictably influence operation priority.
//!
//! The parser supports both complete and streaming (incomplete) modes; the latter is useful
//! for REPLs and similar applications.
//!
//! ## Optional syntax features
//!
//! These features can be switched on or off when defining a [`Parse`](grammars::Parse) impl
//! by declaring the corresponding [`Features`](grammars::Features).
//!
//! - **Tuples.** A tuple is two or more elements separated by commas, such as `(x, y)`
//! or `(1, 2 * x)`. Tuples are parsed both as lvalues and rvalues.
//! - **Tuple destructuring.** Using a tuple as an lvalue, for example, `(x, y, z) = foo`.
//! The "rest" syntax is also supported, either named or unnamed: `(head, ...tail) = foo`,
//! `(a, ..., b, c) = foo`.
//! - **Function definitions.** A definition looks like a closure definition in Rust, e.g.,
//! `|x| x - 10` or `|x, y| { z = max(x, y); (z - x, z - y) }`. A definition may be
//! assigned to a variable (which is the way to define named functions).
//! - **Destructuring for function args.** Similar to tuple destructuring, it is possible to
//! destructure and group args in function definitions, for example, `|(x, y), ...zs| { }`.
//! - **Blocks.** A block is several `;`-delimited statements enclosed in `{}` braces,
//! e.g, `{ z = max(x, y); (z - x, z - y) }`. The blocks can be used in all contexts
//! instead of a simple expression; for example, `min({ z = 5; z - 1 }, 3)`.
//! - **Objects.** Object is a mapping of string fields to values. Objects are defined via
//! *object expressions*, which look similar to struct initialization in Rust or object
//! initialization in JavaScript; for example, `#{ x: 1, y }`. (Note the `#` char at the start
//! of the block; it is used to distinguish object expressions from blocks.)
//! - **Methods.** Method call is a function call separated from the receiver with a `.` char
//! (e.g., `foo.bar(2, x)`).
//! - **Type annotations.** A type annotation in the form `var: Type` can be present
//! in the lvalues or in the function argument definitions. The parser for type annotations
//! is user-defined.
//! - **Boolean operations**: `==`, `!=`, `&&`, `||`, `!`.
//! - **Order comparisons,** that is, `>`, `<`, `>=`, and `<=` boolean ops.
//!
//! ## Differences with Rust
//!
//! *(within shared syntax constructs; of course, Rust is much more expressive)*
//!
//! - No keyword for assigning a variable (i.e., no `let` / `let mut`). There are no
//! keywords in general.
//! - Functions are only defined via the closure syntax.
//! - There is "rest" destructuting for tuples and function arguments.
//! - Type annotations are placed within tuple elements, for example, `(x: Num, _) = y`.
//! - Object expressions are enclosed in `#{ ... }`, similarly to [Rhai](https://rhai.rs/).
//! - Object field access and method calls accept arbitrary block-enclosed "names" in addition to
//! simple names. E.g., `xs.{Array.len}()` is a valid method call with `xs` receiver, `Array.len`
//! method name and an empty args list.
//!
//! # Crate features
//!
//! ## `std`
//!
//! *(On by default)*
//!
//! Enables support of types from `std`, such as the `Error` trait, and propagates to dependencies.
//!
//! ## `num-complex`
//!
//! *(Off by default)*
//!
//! Implements [`NumLiteral`](grammars::NumLiteral) for floating-point complex numbers
//! (`Complex32` and `Complex64`).
//!
//! ## `num-bigint`
//!
//! *(Off by default)*
//!
//! Implements [`NumLiteral`](grammars::NumLiteral) for `BigInt` and `BigUint` from the `num-bigint` crate.
//!
//! # Examples
//!
//! Using a grammar for arithmetic on real values.
//!
//! ```
//! # use assert_matches::assert_matches;
//! use arithmetic_parser::{
//! grammars::{F32Grammar, Parse, Untyped},
//! NomResult, Statement, Expr, FnDefinition, LvalueLen,
//! };
//!
//! const PROGRAM: &str = "
//! // This is a comment.
//! x = 1 + 2.5 * 3 + sin(a^3 / b^2 /* another comment */);
//! // Function declarations have syntax similar to Rust closures.
//! some_function = |a, b| (a + b, a - b);
//! other_function = |x| {
//! r = min(rand(), 0.5);
//! r * x
//! };
//! // Tuples and blocks are supported and have a similar syntax to Rust.
//! (y, z) = some_function({ x = x - 0.5; x }, x);
//! other_function(y - z)
//! ";
//!
//! # fn main() -> anyhow::Result<()> {
//! let block = Untyped::<F32Grammar>::parse_statements(PROGRAM)?;
//! // First statement is an assignment.
//! assert_matches!(
//! block.statements[0].extra,
//! Statement::Assignment { ref lhs, .. } if *lhs.fragment() == "x"
//! );
//! // The RHS of the second statement is a function.
//! let some_function = match &block.statements[1].extra {
//! Statement::Assignment { rhs, .. } => &rhs.extra,
//! _ => panic!("Unexpected parsing result"),
//! };
//! // This function has a single argument and a single statement in the body.
//! assert_matches!(
//! some_function,
//! Expr::FnDefinition(FnDefinition { ref args, ref body, .. })
//! if args.extra.len() == LvalueLen::Exact(2)
//! && body.statements.is_empty()
//! && body.return_value.is_some()
//! );
//! # Ok(())
//! # }
//! ```
#![cfg_attr(not(feature = "std"), no_std)]
#![doc(html_root_url = "https://docs.rs/arithmetic-parser/0.4.0-beta.1")]
#![warn(missing_docs, missing_debug_implementations)]
#![warn(clippy::all, clippy::pedantic)]
#![allow(
clippy::missing_errors_doc,
clippy::must_use_candidate,
clippy::module_name_repetitions
)]
// Polyfill for `alloc` types.
mod alloc {
#[cfg(not(feature = "std"))]
extern crate alloc as std;
pub(crate) use std::{boxed::Box, format, string::String, vec, vec::Vec};
}
pub use crate::{
ast::{
Block, Destructure, DestructureRest, Expr, ExprType, FnDefinition, Lvalue, LvalueLen,
LvalueType, ObjectDestructure, ObjectDestructureField, ObjectExpr, SpannedExpr,
SpannedLvalue, SpannedStatement, Statement, StatementType,
},
error::{Context, Error, ErrorKind, UnsupportedType},
ops::{BinaryOp, Op, OpPriority, UnaryOp},
parser::is_valid_variable_name,
spans::{with_span, InputSpan, LocatedSpan, Location, NomResult, Spanned},
};
mod ast;
mod error;
pub mod grammars;
mod ops;
mod parser;
mod spans;