1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558
//! `TypeConstraints` and implementations.
use core::{fmt, marker::PhantomData};
use crate::{
alloc::{Box, HashMap, String, ToString},
arith::Substitutions,
error::{ErrorKind, OpErrors},
visit::{self, Visit},
Function, Object, PrimitiveType, Slice, Tuple, Type, TypeVar,
};
/// Constraint that can be placed on [`Type`]s.
///
/// Constraints can be placed on [`Function`] type variables, and can be applied
/// to types in [`TypeArithmetic`] impls. For example, [`NumArithmetic`] places
/// the [`Linearity`] constraint on types involved in arithmetic ops.
///
/// The constraint mechanism is similar to trait constraints in Rust, but is much more limited:
///
/// - Constraints cannot be parametric (cf. parameters in traits, such `AsRef<_>`
/// or `Iterator<Item = _>`).
/// - Constraints are applied to types in separation; it is impossible to create a constraint
/// involving several type variables.
/// - Constraints cannot contradict each other.
///
/// # Implementation rules
///
/// - [`Display`](fmt::Display) must display constraint as an identifier (e.g., `Lin`).
/// The string presentation of a constraint must be unique within a [`PrimitiveType`];
/// it is used to identify constraints in a [`ConstraintSet`].
///
/// [`TypeArithmetic`]: crate::arith::TypeArithmetic
/// [`NumArithmetic`]: crate::arith::NumArithmetic
pub trait Constraint<Prim: PrimitiveType>: fmt::Display + Send + Sync + 'static {
/// Returns a [`Visit`]or that will be applied to constrained [`Type`]s. The visitor
/// may use `substitutions` to resolve types and `errors` to record constraint errors.
///
/// # Tips
///
/// - You can use [`StructConstraint`] for typical use cases, which involve recursively
/// traversing `ty`.
fn visitor<'r>(
&self,
substitutions: &'r mut Substitutions<Prim>,
errors: OpErrors<'r, Prim>,
) -> Box<dyn Visit<Prim> + 'r>;
/// Clones this constraint into a `Box`.
///
/// This method should be implemented by implementing [`Clone`] and boxing its output.
fn clone_boxed(&self) -> Box<dyn Constraint<Prim>>;
}
impl<Prim: PrimitiveType> fmt::Debug for dyn Constraint<Prim> {
fn fmt(&self, formatter: &mut fmt::Formatter<'_>) -> fmt::Result {
formatter
.debug_tuple("dyn Constraint")
.field(&self.to_string())
.finish()
}
}
impl<Prim: PrimitiveType> Clone for Box<dyn Constraint<Prim>> {
fn clone(&self) -> Self {
self.clone_boxed()
}
}
/// Marker trait for object-safe constraints, i.e., constraints that can be included
/// into a [`DynConstraints`](crate::DynConstraints).
///
/// Object safety is similar to this notion in Rust. For a constraint `C` to be object-safe,
/// it should be the case that `dyn C` (the untagged union of all types implementing `C`)
/// implements `C`. As an example, this is the case for [`Linearity`], but is not the case
/// for [`Ops`]. Indeed, [`Ops`] requires the type to be addable to itself,
/// which would be impossible for `dyn Ops`.
pub trait ObjectSafeConstraint<Prim: PrimitiveType>: Constraint<Prim> {}
/// Helper to define *structural* [`Constraint`]s, i.e., constraints recursively checking
/// the provided type.
///
/// The following logic is used to check whether a type satisfies the constraint:
///
/// - Primitive types satisfy the constraint iff the predicate provided in [`Self::new()`]
/// returns `true`.
/// - [`Type::Any`] always satisfies the constraint.
/// - [`Type::Dyn`] types satisfy the constraint iff the [`Constraint`] wrapped by this helper
/// is present among [`DynConstraints`](crate::DynConstraints). Thus,
/// if the wrapped constraint is not [object-safe](ObjectSafeConstraint), it will not be satisfied
/// by any `Dyn` type.
/// - Functional types never satisfy the constraint.
/// - A compound type (i.e., a tuple) satisfies the constraint iff all its items satisfy
/// the constraint.
/// - If [`Self::deny_dyn_slices()`] is set, tuple types need to have static length.
///
/// # Examples
///
/// Defining a constraint type using `StructConstraint`:
///
/// ```
/// # use arithmetic_typing::{
/// # arith::{Constraint, StructConstraint, Substitutions}, error::OpErrors, visit::Visit,
/// # PrimitiveType, Type,
/// # };
/// # use std::fmt;
/// /// Constraint for hashable types.
/// #[derive(Clone, Copy)]
/// struct Hashed;
///
/// impl fmt::Display for Hashed {
/// fn fmt(&self, formatter: &mut fmt::Formatter<'_>) -> fmt::Result {
/// formatter.write_str("Hash")
/// }
/// }
///
/// impl<Prim: PrimitiveType> Constraint<Prim> for Hashed {
/// fn visitor<'r>(
/// &self,
/// substitutions: &'r mut Substitutions<Prim>,
/// errors: OpErrors<'r, Prim>,
/// ) -> Box<dyn Visit<Prim> + 'r> {
/// // We can hash everything except for functions (and thus,
/// // types containing functions).
/// StructConstraint::new(*self, |_| true)
/// .visitor(substitutions, errors)
/// }
///
/// fn clone_boxed(&self) -> Box<dyn Constraint<Prim>> {
/// Box::new(*self)
/// }
/// }
/// ```
#[derive(Debug)]
pub struct StructConstraint<Prim, C, F> {
constraint: C,
predicate: F,
deny_dyn_slices: bool,
_prim: PhantomData<Prim>,
}
impl<Prim, C, F> StructConstraint<Prim, C, F>
where
Prim: PrimitiveType,
C: Constraint<Prim> + Clone,
F: Fn(&Prim) -> bool + 'static,
{
/// Creates a new helper. `predicate` determines whether a particular primitive type
/// should satisfy the `constraint`.
pub fn new(constraint: C, predicate: F) -> Self {
Self {
constraint,
predicate,
deny_dyn_slices: false,
_prim: PhantomData,
}
}
/// Marks that dynamically sized slices should fail the constraint check.
#[must_use]
pub fn deny_dyn_slices(mut self) -> Self {
self.deny_dyn_slices = true;
self
}
/// Returns a [`Visit`]or that can be used for [`Constraint::visitor()`] implementations.
pub fn visitor<'r>(
self,
substitutions: &'r mut Substitutions<Prim>,
errors: OpErrors<'r, Prim>,
) -> Box<dyn Visit<Prim> + 'r> {
Box::new(StructConstraintVisitor {
inner: self,
substitutions,
errors,
})
}
}
#[derive(Debug)]
struct StructConstraintVisitor<'r, Prim: PrimitiveType, C, F> {
inner: StructConstraint<Prim, C, F>,
substitutions: &'r mut Substitutions<Prim>,
errors: OpErrors<'r, Prim>,
}
impl<'r, Prim, C, F> Visit<Prim> for StructConstraintVisitor<'r, Prim, C, F>
where
Prim: PrimitiveType,
C: Constraint<Prim> + Clone,
F: Fn(&Prim) -> bool + 'static,
{
fn visit_type(&mut self, ty: &Type<Prim>) {
match ty {
Type::Dyn(constraints) => {
if !constraints.inner.simple.contains(&self.inner.constraint) {
self.errors.push(ErrorKind::failed_constraint(
ty.clone(),
self.inner.constraint.clone(),
));
}
}
_ => visit::visit_type(self, ty),
}
}
fn visit_var(&mut self, var: TypeVar) {
debug_assert!(var.is_free());
self.substitutions.insert_constraint(
var.index(),
&self.inner.constraint,
self.errors.by_ref(),
);
let resolved = self.substitutions.fast_resolve(&Type::Var(var)).clone();
if let Type::Var(_) = resolved {
// Avoid infinite recursion.
} else {
visit::visit_type(self, &resolved);
}
}
fn visit_primitive(&mut self, primitive: &Prim) {
if !(self.inner.predicate)(primitive) {
self.errors.push(ErrorKind::failed_constraint(
Type::Prim(primitive.clone()),
self.inner.constraint.clone(),
));
}
}
fn visit_tuple(&mut self, tuple: &Tuple<Prim>) {
if self.inner.deny_dyn_slices {
let middle_len = tuple.parts().1.map(Slice::len);
if let Some(middle_len) = middle_len {
if let Err(err) = self.substitutions.apply_static_len(middle_len) {
self.errors.push(err);
}
}
}
for (i, element) in tuple.element_types() {
self.errors.push_path_fragment(i);
self.visit_type(element);
self.errors.pop_path_fragment();
}
}
fn visit_object(&mut self, obj: &Object<Prim>) {
for (name, element) in obj.iter() {
self.errors.push_path_fragment(name);
self.visit_type(element);
self.errors.pop_path_fragment();
}
}
fn visit_function(&mut self, function: &Function<Prim>) {
self.errors.push(ErrorKind::failed_constraint(
function.clone().into(),
self.inner.constraint.clone(),
));
}
}
/// [`Constraint`] for numeric types that can be subject to unary `-` and can participate
/// in `T op Num` / `Num op T` operations.
///
/// Defined recursively as [linear](LinearType) primitive types and tuples / objects consisting
/// of linear types.
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
pub struct Linearity;
impl fmt::Display for Linearity {
fn fmt(&self, formatter: &mut fmt::Formatter<'_>) -> fmt::Result {
formatter.write_str("Lin")
}
}
impl<Prim: LinearType> Constraint<Prim> for Linearity {
fn visitor<'r>(
&self,
substitutions: &'r mut Substitutions<Prim>,
errors: OpErrors<'r, Prim>,
) -> Box<dyn Visit<Prim> + 'r> {
StructConstraint::new(*self, LinearType::is_linear).visitor(substitutions, errors)
}
fn clone_boxed(&self) -> Box<dyn Constraint<Prim>> {
Box::new(*self)
}
}
impl<Prim: LinearType> ObjectSafeConstraint<Prim> for Linearity {}
/// Primitive type which supports a notion of *linearity*. Linear types are types that
/// can be used in arithmetic ops.
pub trait LinearType: PrimitiveType {
/// Returns `true` iff this type is linear.
fn is_linear(&self) -> bool;
}
/// [`Constraint`] for numeric types that can participate in binary arithmetic ops (`T op T`).
///
/// Defined as a subset of `Lin` types without dynamically sized slices and
/// any types containing dynamically sized slices.
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
pub struct Ops;
impl fmt::Display for Ops {
fn fmt(&self, formatter: &mut fmt::Formatter<'_>) -> fmt::Result {
formatter.write_str("Ops")
}
}
impl<Prim: LinearType> Constraint<Prim> for Ops {
fn visitor<'r>(
&self,
substitutions: &'r mut Substitutions<Prim>,
errors: OpErrors<'r, Prim>,
) -> Box<dyn Visit<Prim> + 'r> {
StructConstraint::new(*self, LinearType::is_linear)
.deny_dyn_slices()
.visitor(substitutions, errors)
}
fn clone_boxed(&self) -> Box<dyn Constraint<Prim>> {
Box::new(*self)
}
}
/// Set of [`Constraint`]s.
///
/// [`Display`](fmt::Display)ed as `Foo + Bar + Quux`, where `Foo`, `Bar` and `Quux` are
/// constraints in the set.
#[derive(Debug, Clone)]
pub struct ConstraintSet<Prim: PrimitiveType> {
inner: HashMap<String, (Box<dyn Constraint<Prim>>, bool)>,
}
impl<Prim: PrimitiveType> Default for ConstraintSet<Prim> {
fn default() -> Self {
Self::new()
}
}
impl<Prim: PrimitiveType> PartialEq for ConstraintSet<Prim> {
fn eq(&self, other: &Self) -> bool {
if self.inner.len() == other.inner.len() {
self.inner.keys().all(|key| other.inner.contains_key(key))
} else {
false
}
}
}
impl<Prim: PrimitiveType> fmt::Display for ConstraintSet<Prim> {
fn fmt(&self, formatter: &mut fmt::Formatter<'_>) -> fmt::Result {
let len = self.inner.len();
for (i, (constraint, _)) in self.inner.values().enumerate() {
fmt::Display::fmt(constraint, formatter)?;
if i + 1 < len {
formatter.write_str(" + ")?;
}
}
Ok(())
}
}
impl<Prim: PrimitiveType> ConstraintSet<Prim> {
/// Creates an empty set.
pub fn new() -> Self {
Self {
inner: HashMap::new(),
}
}
/// Creates a set with one constraint.
pub fn just(constraint: impl Constraint<Prim>) -> Self {
let mut this = Self::new();
this.insert(constraint);
this
}
/// Checks if this constraint set is empty.
pub fn is_empty(&self) -> bool {
self.inner.is_empty()
}
fn contains(&self, constraint: &impl Constraint<Prim>) -> bool {
self.inner.contains_key(&constraint.to_string())
}
/// Inserts a constraint into this set.
pub fn insert(&mut self, constraint: impl Constraint<Prim>) {
self.inner
.insert(constraint.to_string(), (Box::new(constraint), false));
}
/// Inserts an object-safe constraint into this set.
pub fn insert_object_safe(&mut self, constraint: impl ObjectSafeConstraint<Prim>) {
self.inner
.insert(constraint.to_string(), (Box::new(constraint), true));
}
/// Inserts a boxed constraint into this set.
pub(crate) fn insert_boxed(&mut self, constraint: Box<dyn Constraint<Prim>>) {
self.inner
.insert(constraint.to_string(), (constraint, false));
}
/// Returns the link to constraint and an indicator whether it is object-safe.
pub(crate) fn get_by_name(&self, name: &str) -> Option<(&dyn Constraint<Prim>, bool)> {
self.inner
.get(name)
.map(|(constraint, is_object_safe)| (constraint.as_ref(), *is_object_safe))
}
/// Applies all constraints from this set.
pub(crate) fn apply_all(
&self,
ty: &Type<Prim>,
substitutions: &mut Substitutions<Prim>,
mut errors: OpErrors<'_, Prim>,
) {
for (constraint, _) in self.inner.values() {
constraint
.visitor(substitutions, errors.by_ref())
.visit_type(ty);
}
}
/// Applies all constraints from this set to an object.
pub(crate) fn apply_all_to_object(
&self,
object: &Object<Prim>,
substitutions: &mut Substitutions<Prim>,
mut errors: OpErrors<'_, Prim>,
) {
for (constraint, _) in self.inner.values() {
constraint
.visitor(substitutions, errors.by_ref())
.visit_object(object);
}
}
}
/// Extended [`ConstraintSet`] that additionally supports object constraints.
#[derive(Debug, Clone, PartialEq)]
pub(crate) struct CompleteConstraints<Prim: PrimitiveType> {
pub simple: ConstraintSet<Prim>,
/// Object constraint. Stored as `Type` for convenience.
pub object: Option<Object<Prim>>,
}
impl<Prim: PrimitiveType> Default for CompleteConstraints<Prim> {
fn default() -> Self {
Self {
simple: ConstraintSet::new(),
object: None,
}
}
}
impl<Prim: PrimitiveType> From<ConstraintSet<Prim>> for CompleteConstraints<Prim> {
fn from(constraints: ConstraintSet<Prim>) -> Self {
Self {
simple: constraints,
object: None,
}
}
}
impl<Prim: PrimitiveType> From<Object<Prim>> for CompleteConstraints<Prim> {
fn from(object: Object<Prim>) -> Self {
Self {
simple: ConstraintSet::default(),
object: Some(object),
}
}
}
impl<Prim: PrimitiveType> fmt::Display for CompleteConstraints<Prim> {
fn fmt(&self, formatter: &mut fmt::Formatter<'_>) -> fmt::Result {
match (&self.object, self.simple.is_empty()) {
(Some(object), false) => write!(formatter, "{object} + {}", self.simple),
(Some(object), true) => fmt::Display::fmt(object, formatter),
(None, _) => fmt::Display::fmt(&self.simple, formatter),
}
}
}
impl<Prim: PrimitiveType> CompleteConstraints<Prim> {
/// Checks if this constraint set is empty.
pub fn is_empty(&self) -> bool {
self.object.is_none() && self.simple.is_empty()
}
/// Inserts a constraint into this set.
pub fn insert(
&mut self,
constraint: impl Constraint<Prim>,
substitutions: &mut Substitutions<Prim>,
errors: OpErrors<'_, Prim>,
) {
self.simple.insert(constraint);
self.check_object_consistency(substitutions, errors);
}
/// Applies all constraints from this set.
pub fn apply_all(
&self,
ty: &Type<Prim>,
substitutions: &mut Substitutions<Prim>,
mut errors: OpErrors<'_, Prim>,
) {
self.simple.apply_all(ty, substitutions, errors.by_ref());
if let Some(lhs) = &self.object {
lhs.apply_as_constraint(ty, substitutions, errors);
}
}
/// Maps the object constraint if present.
pub fn map_object(self, map: impl FnOnce(&mut Object<Prim>)) -> Self {
Self {
simple: self.simple,
object: self.object.map(|mut object| {
map(&mut object);
object
}),
}
}
/// Inserts an object constraint into this set.
pub fn insert_obj_constraint(
&mut self,
object: Object<Prim>,
substitutions: &mut Substitutions<Prim>,
mut errors: OpErrors<'_, Prim>,
) {
if let Some(existing_object) = &mut self.object {
existing_object.extend_from(object, substitutions, errors.by_ref());
} else {
self.object = Some(object);
}
self.check_object_consistency(substitutions, errors);
}
fn check_object_consistency(
&self,
substitutions: &mut Substitutions<Prim>,
errors: OpErrors<'_, Prim>,
) {
if let Some(object) = &self.object {
self.simple
.apply_all_to_object(object, substitutions, errors);
}
}
}