1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
//! `TypeConstraints` and implementations.

use core::{fmt, marker::PhantomData};

use crate::{
    alloc::{Box, HashMap, String, ToString},
    arith::Substitutions,
    error::{ErrorKind, OpErrors},
    visit::{self, Visit},
    Function, Object, PrimitiveType, Slice, Tuple, Type, TypeVar,
};

/// Constraint that can be placed on [`Type`]s.
///
/// Constraints can be placed on [`Function`] type variables, and can be applied
/// to types in [`TypeArithmetic`] impls. For example, [`NumArithmetic`] places
/// the [`Linearity`] constraint on types involved in arithmetic ops.
///
/// The constraint mechanism is similar to trait constraints in Rust, but is much more limited:
///
/// - Constraints cannot be parametric (cf. parameters in traits, such `AsRef<_>`
///   or `Iterator<Item = _>`).
/// - Constraints are applied to types in separation; it is impossible to create a constraint
///   involving several type variables.
/// - Constraints cannot contradict each other.
///
/// # Implementation rules
///
/// - [`Display`](fmt::Display) must display constraint as an identifier (e.g., `Lin`).
///   The string presentation of a constraint must be unique within a [`PrimitiveType`];
///   it is used to identify constraints in a [`ConstraintSet`].
///
/// [`TypeArithmetic`]: crate::arith::TypeArithmetic
/// [`NumArithmetic`]: crate::arith::NumArithmetic
pub trait Constraint<Prim: PrimitiveType>: fmt::Display + Send + Sync + 'static {
    /// Returns a [`Visit`]or that will be applied to constrained [`Type`]s. The visitor
    /// may use `substitutions` to resolve types and `errors` to record constraint errors.
    ///
    /// # Tips
    ///
    /// - You can use [`StructConstraint`] for typical use cases, which involve recursively
    ///   traversing `ty`.
    fn visitor<'r>(
        &self,
        substitutions: &'r mut Substitutions<Prim>,
        errors: OpErrors<'r, Prim>,
    ) -> Box<dyn Visit<Prim> + 'r>;

    /// Clones this constraint into a `Box`.
    ///
    /// This method should be implemented by implementing [`Clone`] and boxing its output.
    fn clone_boxed(&self) -> Box<dyn Constraint<Prim>>;
}

impl<Prim: PrimitiveType> fmt::Debug for dyn Constraint<Prim> {
    fn fmt(&self, formatter: &mut fmt::Formatter<'_>) -> fmt::Result {
        formatter
            .debug_tuple("dyn Constraint")
            .field(&self.to_string())
            .finish()
    }
}

impl<Prim: PrimitiveType> Clone for Box<dyn Constraint<Prim>> {
    fn clone(&self) -> Self {
        self.clone_boxed()
    }
}

/// Marker trait for object-safe constraints, i.e., constraints that can be included
/// into a [`DynConstraints`](crate::DynConstraints).
///
/// Object safety is similar to this notion in Rust. For a constraint `C` to be object-safe,
/// it should be the case that `dyn C` (the untagged union of all types implementing `C`)
/// implements `C`. As an example, this is the case for [`Linearity`], but is not the case
/// for [`Ops`]. Indeed, [`Ops`] requires the type to be addable to itself,
/// which would be impossible for `dyn Ops`.
pub trait ObjectSafeConstraint<Prim: PrimitiveType>: Constraint<Prim> {}

/// Helper to define *structural* [`Constraint`]s, i.e., constraints recursively checking
/// the provided type.
///
/// The following logic is used to check whether a type satisfies the constraint:
///
/// - Primitive types satisfy the constraint iff the predicate provided in [`Self::new()`]
///   returns `true`.
/// - [`Type::Any`] always satisfies the constraint.
/// - [`Type::Dyn`] types satisfy the constraint iff the [`Constraint`] wrapped by this helper
///   is present among [`DynConstraints`](crate::DynConstraints). Thus,
///   if the wrapped constraint is not [object-safe](ObjectSafeConstraint), it will not be satisfied
///   by any `Dyn` type.
/// - Functional types never satisfy the constraint.
/// - A compound type (i.e., a tuple) satisfies the constraint iff all its items satisfy
///   the constraint.
/// - If [`Self::deny_dyn_slices()`] is set, tuple types need to have static length.
///
/// # Examples
///
/// Defining a constraint type using `StructConstraint`:
///
/// ```
/// # use arithmetic_typing::{
/// #     arith::{Constraint, StructConstraint, Substitutions}, error::OpErrors, visit::Visit,
/// #     PrimitiveType, Type,
/// # };
/// # use std::fmt;
/// /// Constraint for hashable types.
/// #[derive(Clone, Copy)]
/// struct Hashed;
///
/// impl fmt::Display for Hashed {
///     fn fmt(&self, formatter: &mut fmt::Formatter<'_>) -> fmt::Result {
///         formatter.write_str("Hash")
///     }
/// }
///
/// impl<Prim: PrimitiveType> Constraint<Prim> for Hashed {
///     fn visitor<'r>(
///         &self,
///         substitutions: &'r mut Substitutions<Prim>,
///         errors: OpErrors<'r, Prim>,
///     ) -> Box<dyn Visit<Prim> + 'r> {
///         // We can hash everything except for functions (and thus,
///         // types containing functions).
///         StructConstraint::new(*self, |_| true)
///             .visitor(substitutions, errors)
///     }
///
///     fn clone_boxed(&self) -> Box<dyn Constraint<Prim>> {
///         Box::new(*self)
///     }
/// }
/// ```
#[derive(Debug)]
pub struct StructConstraint<Prim, C, F> {
    constraint: C,
    predicate: F,
    deny_dyn_slices: bool,
    _prim: PhantomData<Prim>,
}

impl<Prim, C, F> StructConstraint<Prim, C, F>
where
    Prim: PrimitiveType,
    C: Constraint<Prim> + Clone,
    F: Fn(&Prim) -> bool + 'static,
{
    /// Creates a new helper. `predicate` determines whether a particular primitive type
    /// should satisfy the `constraint`.
    pub fn new(constraint: C, predicate: F) -> Self {
        Self {
            constraint,
            predicate,
            deny_dyn_slices: false,
            _prim: PhantomData,
        }
    }

    /// Marks that dynamically sized slices should fail the constraint check.
    #[must_use]
    pub fn deny_dyn_slices(mut self) -> Self {
        self.deny_dyn_slices = true;
        self
    }

    /// Returns a [`Visit`]or that can be used for [`Constraint::visitor()`] implementations.
    pub fn visitor<'r>(
        self,
        substitutions: &'r mut Substitutions<Prim>,
        errors: OpErrors<'r, Prim>,
    ) -> Box<dyn Visit<Prim> + 'r> {
        Box::new(StructConstraintVisitor {
            inner: self,
            substitutions,
            errors,
        })
    }
}

#[derive(Debug)]
struct StructConstraintVisitor<'r, Prim: PrimitiveType, C, F> {
    inner: StructConstraint<Prim, C, F>,
    substitutions: &'r mut Substitutions<Prim>,
    errors: OpErrors<'r, Prim>,
}

impl<'r, Prim, C, F> Visit<Prim> for StructConstraintVisitor<'r, Prim, C, F>
where
    Prim: PrimitiveType,
    C: Constraint<Prim> + Clone,
    F: Fn(&Prim) -> bool + 'static,
{
    fn visit_type(&mut self, ty: &Type<Prim>) {
        match ty {
            Type::Dyn(constraints) => {
                if !constraints.inner.simple.contains(&self.inner.constraint) {
                    self.errors.push(ErrorKind::failed_constraint(
                        ty.clone(),
                        self.inner.constraint.clone(),
                    ));
                }
            }
            _ => visit::visit_type(self, ty),
        }
    }

    fn visit_var(&mut self, var: TypeVar) {
        debug_assert!(var.is_free());
        self.substitutions.insert_constraint(
            var.index(),
            &self.inner.constraint,
            self.errors.by_ref(),
        );

        let resolved = self.substitutions.fast_resolve(&Type::Var(var)).clone();
        if let Type::Var(_) = resolved {
            // Avoid infinite recursion.
        } else {
            visit::visit_type(self, &resolved);
        }
    }

    fn visit_primitive(&mut self, primitive: &Prim) {
        if !(self.inner.predicate)(primitive) {
            self.errors.push(ErrorKind::failed_constraint(
                Type::Prim(primitive.clone()),
                self.inner.constraint.clone(),
            ));
        }
    }

    fn visit_tuple(&mut self, tuple: &Tuple<Prim>) {
        if self.inner.deny_dyn_slices {
            let middle_len = tuple.parts().1.map(Slice::len);
            if let Some(middle_len) = middle_len {
                if let Err(err) = self.substitutions.apply_static_len(middle_len) {
                    self.errors.push(err);
                }
            }
        }

        for (i, element) in tuple.element_types() {
            self.errors.push_path_fragment(i);
            self.visit_type(element);
            self.errors.pop_path_fragment();
        }
    }

    fn visit_object(&mut self, obj: &Object<Prim>) {
        for (name, element) in obj.iter() {
            self.errors.push_path_fragment(name);
            self.visit_type(element);
            self.errors.pop_path_fragment();
        }
    }

    fn visit_function(&mut self, function: &Function<Prim>) {
        self.errors.push(ErrorKind::failed_constraint(
            function.clone().into(),
            self.inner.constraint.clone(),
        ));
    }
}

/// [`Constraint`] for numeric types that can be subject to unary `-` and can participate
/// in `T op Num` / `Num op T` operations.
///
/// Defined recursively as [linear](LinearType) primitive types and tuples / objects consisting
/// of linear types.
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
pub struct Linearity;

impl fmt::Display for Linearity {
    fn fmt(&self, formatter: &mut fmt::Formatter<'_>) -> fmt::Result {
        formatter.write_str("Lin")
    }
}

impl<Prim: LinearType> Constraint<Prim> for Linearity {
    fn visitor<'r>(
        &self,
        substitutions: &'r mut Substitutions<Prim>,
        errors: OpErrors<'r, Prim>,
    ) -> Box<dyn Visit<Prim> + 'r> {
        StructConstraint::new(*self, LinearType::is_linear).visitor(substitutions, errors)
    }

    fn clone_boxed(&self) -> Box<dyn Constraint<Prim>> {
        Box::new(*self)
    }
}

impl<Prim: LinearType> ObjectSafeConstraint<Prim> for Linearity {}

/// Primitive type which supports a notion of *linearity*. Linear types are types that
/// can be used in arithmetic ops.
pub trait LinearType: PrimitiveType {
    /// Returns `true` iff this type is linear.
    fn is_linear(&self) -> bool;
}

/// [`Constraint`] for numeric types that can participate in binary arithmetic ops (`T op T`).
///
/// Defined as a subset of `Lin` types without dynamically sized slices and
/// any types containing dynamically sized slices.
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
pub struct Ops;

impl fmt::Display for Ops {
    fn fmt(&self, formatter: &mut fmt::Formatter<'_>) -> fmt::Result {
        formatter.write_str("Ops")
    }
}

impl<Prim: LinearType> Constraint<Prim> for Ops {
    fn visitor<'r>(
        &self,
        substitutions: &'r mut Substitutions<Prim>,
        errors: OpErrors<'r, Prim>,
    ) -> Box<dyn Visit<Prim> + 'r> {
        StructConstraint::new(*self, LinearType::is_linear)
            .deny_dyn_slices()
            .visitor(substitutions, errors)
    }

    fn clone_boxed(&self) -> Box<dyn Constraint<Prim>> {
        Box::new(*self)
    }
}

/// Set of [`Constraint`]s.
///
/// [`Display`](fmt::Display)ed as `Foo + Bar + Quux`, where `Foo`, `Bar` and `Quux` are
/// constraints in the set.
#[derive(Debug, Clone)]
pub struct ConstraintSet<Prim: PrimitiveType> {
    inner: HashMap<String, (Box<dyn Constraint<Prim>>, bool)>,
}

impl<Prim: PrimitiveType> Default for ConstraintSet<Prim> {
    fn default() -> Self {
        Self::new()
    }
}

impl<Prim: PrimitiveType> PartialEq for ConstraintSet<Prim> {
    fn eq(&self, other: &Self) -> bool {
        if self.inner.len() == other.inner.len() {
            self.inner.keys().all(|key| other.inner.contains_key(key))
        } else {
            false
        }
    }
}

impl<Prim: PrimitiveType> fmt::Display for ConstraintSet<Prim> {
    fn fmt(&self, formatter: &mut fmt::Formatter<'_>) -> fmt::Result {
        let len = self.inner.len();
        for (i, (constraint, _)) in self.inner.values().enumerate() {
            fmt::Display::fmt(constraint, formatter)?;
            if i + 1 < len {
                formatter.write_str(" + ")?;
            }
        }
        Ok(())
    }
}

impl<Prim: PrimitiveType> ConstraintSet<Prim> {
    /// Creates an empty set.
    pub fn new() -> Self {
        Self {
            inner: HashMap::new(),
        }
    }

    /// Creates a set with one constraint.
    pub fn just(constraint: impl Constraint<Prim>) -> Self {
        let mut this = Self::new();
        this.insert(constraint);
        this
    }

    /// Checks if this constraint set is empty.
    pub fn is_empty(&self) -> bool {
        self.inner.is_empty()
    }

    fn contains(&self, constraint: &impl Constraint<Prim>) -> bool {
        self.inner.contains_key(&constraint.to_string())
    }

    /// Inserts a constraint into this set.
    pub fn insert(&mut self, constraint: impl Constraint<Prim>) {
        self.inner
            .insert(constraint.to_string(), (Box::new(constraint), false));
    }

    /// Inserts an object-safe constraint into this set.
    pub fn insert_object_safe(&mut self, constraint: impl ObjectSafeConstraint<Prim>) {
        self.inner
            .insert(constraint.to_string(), (Box::new(constraint), true));
    }

    /// Inserts a boxed constraint into this set.
    pub(crate) fn insert_boxed(&mut self, constraint: Box<dyn Constraint<Prim>>) {
        self.inner
            .insert(constraint.to_string(), (constraint, false));
    }

    /// Returns the link to constraint and an indicator whether it is object-safe.
    pub(crate) fn get_by_name(&self, name: &str) -> Option<(&dyn Constraint<Prim>, bool)> {
        self.inner
            .get(name)
            .map(|(constraint, is_object_safe)| (constraint.as_ref(), *is_object_safe))
    }

    /// Applies all constraints from this set.
    pub(crate) fn apply_all(
        &self,
        ty: &Type<Prim>,
        substitutions: &mut Substitutions<Prim>,
        mut errors: OpErrors<'_, Prim>,
    ) {
        for (constraint, _) in self.inner.values() {
            constraint
                .visitor(substitutions, errors.by_ref())
                .visit_type(ty);
        }
    }

    /// Applies all constraints from this set to an object.
    pub(crate) fn apply_all_to_object(
        &self,
        object: &Object<Prim>,
        substitutions: &mut Substitutions<Prim>,
        mut errors: OpErrors<'_, Prim>,
    ) {
        for (constraint, _) in self.inner.values() {
            constraint
                .visitor(substitutions, errors.by_ref())
                .visit_object(object);
        }
    }
}

/// Extended [`ConstraintSet`] that additionally supports object constraints.
#[derive(Debug, Clone, PartialEq)]
pub(crate) struct CompleteConstraints<Prim: PrimitiveType> {
    pub simple: ConstraintSet<Prim>,
    /// Object constraint. Stored as `Type` for convenience.
    pub object: Option<Object<Prim>>,
}

impl<Prim: PrimitiveType> Default for CompleteConstraints<Prim> {
    fn default() -> Self {
        Self {
            simple: ConstraintSet::new(),
            object: None,
        }
    }
}

impl<Prim: PrimitiveType> From<ConstraintSet<Prim>> for CompleteConstraints<Prim> {
    fn from(constraints: ConstraintSet<Prim>) -> Self {
        Self {
            simple: constraints,
            object: None,
        }
    }
}

impl<Prim: PrimitiveType> From<Object<Prim>> for CompleteConstraints<Prim> {
    fn from(object: Object<Prim>) -> Self {
        Self {
            simple: ConstraintSet::default(),
            object: Some(object),
        }
    }
}

impl<Prim: PrimitiveType> fmt::Display for CompleteConstraints<Prim> {
    fn fmt(&self, formatter: &mut fmt::Formatter<'_>) -> fmt::Result {
        match (&self.object, self.simple.is_empty()) {
            (Some(object), false) => write!(formatter, "{object} + {}", self.simple),
            (Some(object), true) => fmt::Display::fmt(object, formatter),
            (None, _) => fmt::Display::fmt(&self.simple, formatter),
        }
    }
}

impl<Prim: PrimitiveType> CompleteConstraints<Prim> {
    /// Checks if this constraint set is empty.
    pub fn is_empty(&self) -> bool {
        self.object.is_none() && self.simple.is_empty()
    }

    /// Inserts a constraint into this set.
    pub fn insert(
        &mut self,
        constraint: impl Constraint<Prim>,
        substitutions: &mut Substitutions<Prim>,
        errors: OpErrors<'_, Prim>,
    ) {
        self.simple.insert(constraint);
        self.check_object_consistency(substitutions, errors);
    }

    /// Applies all constraints from this set.
    pub fn apply_all(
        &self,
        ty: &Type<Prim>,
        substitutions: &mut Substitutions<Prim>,
        mut errors: OpErrors<'_, Prim>,
    ) {
        self.simple.apply_all(ty, substitutions, errors.by_ref());
        if let Some(lhs) = &self.object {
            lhs.apply_as_constraint(ty, substitutions, errors);
        }
    }

    /// Maps the object constraint if present.
    pub fn map_object(self, map: impl FnOnce(&mut Object<Prim>)) -> Self {
        Self {
            simple: self.simple,
            object: self.object.map(|mut object| {
                map(&mut object);
                object
            }),
        }
    }

    /// Inserts an object constraint into this set.
    pub fn insert_obj_constraint(
        &mut self,
        object: Object<Prim>,
        substitutions: &mut Substitutions<Prim>,
        mut errors: OpErrors<'_, Prim>,
    ) {
        if let Some(existing_object) = &mut self.object {
            existing_object.extend_from(object, substitutions, errors.by_ref());
        } else {
            self.object = Some(object);
        }
        self.check_object_consistency(substitutions, errors);
    }

    fn check_object_consistency(
        &self,
        substitutions: &mut Substitutions<Prim>,
        errors: OpErrors<'_, Prim>,
    ) {
        if let Some(object) = &self.object {
            self.simple
                .apply_all_to_object(object, substitutions, errors);
        }
    }
}