1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
//! Substitutions type and dependencies.

use std::{
    cmp::Ordering,
    collections::{HashMap, HashSet},
    iter, ops, ptr,
};

use crate::{
    arith::{CompleteConstraints, Constraint},
    error::{ErrorKind, ErrorPathFragment, OpErrors, TupleContext},
    visit::{self, Visit, VisitMut},
    Function, Object, PrimitiveType, Tuple, TupleLen, Type, TypeVar, UnknownLen,
};

mod fns;
use self::fns::{MonoTypeTransformer, ParamMapping};

#[cfg(test)]
mod tests;

#[derive(Debug, Clone, Copy)]
enum LenErrorKind {
    UnresolvedParam,
    Mismatch,
    Dynamic(TupleLen),
}

/// Set of equations and constraints on type variables.
#[derive(Debug, Clone)]
pub struct Substitutions<Prim: PrimitiveType> {
    /// Number of type variables.
    type_var_count: usize,
    /// Type variable equations, encoded as `type_var[key] = value`.
    eqs: HashMap<usize, Type<Prim>>,
    /// Constraints on type variables.
    constraints: HashMap<usize, CompleteConstraints<Prim>>,
    /// Number of length variables.
    len_var_count: usize,
    /// Length variable equations.
    length_eqs: HashMap<usize, TupleLen>,
    /// Lengths that have static restriction.
    static_lengths: HashSet<usize>,
}

impl<Prim: PrimitiveType> Default for Substitutions<Prim> {
    fn default() -> Self {
        Self {
            type_var_count: 0,
            eqs: HashMap::new(),
            constraints: HashMap::new(),
            len_var_count: 0,
            length_eqs: HashMap::new(),
            static_lengths: HashSet::new(),
        }
    }
}

impl<Prim: PrimitiveType> Substitutions<Prim> {
    /// Inserts `constraints` for a type var with the specified index and all vars
    /// it is equivalent to.
    pub fn insert_constraint<C>(
        &mut self,
        var_idx: usize,
        constraint: &C,
        mut errors: OpErrors<'_, Prim>,
    ) where
        C: Constraint<Prim> + Clone,
    {
        for idx in self.equivalent_vars(var_idx) {
            let mut current_constraints = self.constraints.remove(&idx).unwrap_or_default();
            current_constraints.insert(constraint.clone(), self, errors.by_ref());
            self.constraints.insert(idx, current_constraints);
        }
    }

    /// Returns an object constraint associated with the specified type var. The returned type
    /// is resolved.
    pub(crate) fn object_constraint(&self, var: TypeVar) -> Option<Object<Prim>> {
        if var.is_free() {
            let mut ty = self.constraints.get(&var.index())?.object.clone()?;
            self.resolver().visit_object_mut(&mut ty);
            Some(ty)
        } else {
            None
        }
    }

    /// Inserts an object constraint for a type var with the specified index.
    pub(crate) fn insert_obj_constraint(
        &mut self,
        var_idx: usize,
        constraint: &Object<Prim>,
        mut errors: OpErrors<'_, Prim>,
    ) {
        // Check whether the constraint is recursive.
        let mut checker = OccurrenceChecker::new(self, self.equivalent_vars(var_idx));
        checker.visit_object(constraint);
        if let Some(var) = checker.recursive_var {
            self.handle_recursive_type(Type::Object(constraint.clone()), var, &mut errors);
            return;
        }

        for idx in self.equivalent_vars(var_idx) {
            let mut current_constraints = self.constraints.remove(&idx).unwrap_or_default();
            current_constraints.insert_obj_constraint(constraint.clone(), self, errors.by_ref());
            self.constraints.insert(idx, current_constraints);
        }
    }

    // TODO: If recursion is manifested via constraints, the returned type is not informative.
    fn handle_recursive_type(
        &self,
        ty: Type<Prim>,
        recursive_var: usize,
        errors: &mut OpErrors<'_, Prim>,
    ) {
        let mut resolved_ty = ty;
        self.resolver().visit_type_mut(&mut resolved_ty);
        TypeSanitizer::new(recursive_var).visit_type_mut(&mut resolved_ty);
        errors.push(ErrorKind::RecursiveType(resolved_ty));
    }

    /// Returns type var indexes that are equivalent to the provided `var_idx`,
    /// including `var_idx` itself.
    fn equivalent_vars(&self, var_idx: usize) -> Vec<usize> {
        let ty = Type::free_var(var_idx);
        let mut ty = &ty;
        let mut equivalent_vars = vec![];

        while let Type::Var(var) = ty {
            debug_assert!(var.is_free());
            equivalent_vars.push(var.index());
            if let Some(resolved) = self.eqs.get(&var.index()) {
                ty = resolved;
            } else {
                break;
            }
        }
        equivalent_vars
    }

    /// Marks `len` as static, i.e., not containing [`UnknownLen::Dynamic`] components.
    #[allow(clippy::missing_panics_doc)]
    pub fn apply_static_len(&mut self, len: TupleLen) -> Result<(), ErrorKind<Prim>> {
        let resolved = self.resolve_len(len);
        self.apply_static_len_inner(resolved)
            .map_err(|err| match err {
                LenErrorKind::UnresolvedParam => ErrorKind::UnresolvedParam,
                LenErrorKind::Dynamic(len) => ErrorKind::DynamicLen(len),
                LenErrorKind::Mismatch => unreachable!(),
            })
    }

    // Assumes that `len` is resolved.
    fn apply_static_len_inner(&mut self, len: TupleLen) -> Result<(), LenErrorKind> {
        match len.components().0 {
            None => Ok(()),
            Some(UnknownLen::Dynamic) => Err(LenErrorKind::Dynamic(len)),
            Some(UnknownLen::Var(var)) => {
                if var.is_free() {
                    self.static_lengths.insert(var.index());
                    Ok(())
                } else {
                    Err(LenErrorKind::UnresolvedParam)
                }
            }
        }
    }

    /// Resolves the type by following established equality links between type variables.
    pub fn fast_resolve<'a>(&'a self, mut ty: &'a Type<Prim>) -> &'a Type<Prim> {
        while let Type::Var(var) = ty {
            if !var.is_free() {
                // Bound variables cannot be resolved further.
                break;
            }

            if let Some(resolved) = self.eqs.get(&var.index()) {
                ty = resolved;
            } else {
                break;
            }
        }
        ty
    }

    /// Returns a visitor that resolves the type using equality relations in these `Substitutions`.
    pub fn resolver(&self) -> impl VisitMut<Prim> + '_ {
        TypeResolver {
            substitutions: self,
        }
    }

    /// Resolves the provided `len` given length equations in this instance.
    pub(crate) fn resolve_len(&self, len: TupleLen) -> TupleLen {
        let mut resolved = len;
        while let (Some(UnknownLen::Var(var)), exact) = resolved.components() {
            if !var.is_free() {
                break;
            }

            if let Some(eq_rhs) = self.length_eqs.get(&var.index()) {
                resolved = *eq_rhs + exact;
            } else {
                break;
            }
        }
        resolved
    }

    /// Creates and returns a new type variable.
    pub fn new_type_var(&mut self) -> Type<Prim> {
        let new_type = Type::free_var(self.type_var_count);
        self.type_var_count += 1;
        new_type
    }

    /// Creates and returns a new length variable.
    pub(crate) fn new_len_var(&mut self) -> UnknownLen {
        let new_length = UnknownLen::free_var(self.len_var_count);
        self.len_var_count += 1;
        new_length
    }

    /// Unifies types in `lhs` and `rhs`.
    ///
    /// - LHS corresponds to the lvalue in assignments and to called function signature in fn calls.
    /// - RHS corresponds to the rvalue in assignments and to the type of the called function.
    ///
    /// If unification is impossible, the corresponding error(s) will be put into `errors`.
    pub fn unify(&mut self, lhs: &Type<Prim>, rhs: &Type<Prim>, mut errors: OpErrors<'_, Prim>) {
        let resolved_lhs = self.fast_resolve(lhs).clone();
        let resolved_rhs = self.fast_resolve(rhs).clone();

        // **NB.** LHS and RHS should never switch sides; the side is important for
        // accuracy of error reporting, and for some cases of type inference (e.g.,
        // instantiation of parametric functions).
        match (&resolved_lhs, &resolved_rhs) {
            // Variables should be assigned *before* the equality check and dealing with `Any`
            // to account for `Var <- Any` assignment.
            (Type::Var(var), ty) => {
                if var.is_free() {
                    self.unify_var(var.index(), ty, true, errors);
                } else {
                    errors.push(ErrorKind::UnresolvedParam);
                }
            }

            // This takes care of `Any` types because they are equal to anything.
            (ty, other_ty) if ty == other_ty => {
                // We already know that types are equal.
            }

            (Type::Dyn(constraints), ty) => {
                constraints.inner.apply_all(ty, self, errors);
            }

            (ty, Type::Var(var)) => {
                if var.is_free() {
                    self.unify_var(var.index(), ty, false, errors);
                } else {
                    errors.push(ErrorKind::UnresolvedParam);
                }
            }

            (Type::Tuple(lhs_tuple), Type::Tuple(rhs_tuple)) => {
                self.unify_tuples(lhs_tuple, rhs_tuple, TupleContext::Generic, errors);
            }
            (Type::Object(lhs_obj), Type::Object(rhs_obj)) => {
                self.unify_objects(lhs_obj, rhs_obj, errors);
            }

            (Type::Function(lhs_fn), Type::Function(rhs_fn)) => {
                self.unify_fn_types(lhs_fn, rhs_fn, errors);
            }

            (ty, other_ty) => {
                let mut resolver = self.resolver();
                let mut ty = ty.clone();
                resolver.visit_type_mut(&mut ty);
                let mut other_ty = other_ty.clone();
                resolver.visit_type_mut(&mut other_ty);
                errors.push(ErrorKind::TypeMismatch(ty, other_ty));
            }
        }
    }

    fn unify_tuples(
        &mut self,
        lhs: &Tuple<Prim>,
        rhs: &Tuple<Prim>,
        context: TupleContext,
        mut errors: OpErrors<'_, Prim>,
    ) {
        let resolved_len = self.unify_lengths(lhs.len(), rhs.len(), context);
        let resolved_len = match resolved_len {
            Ok(len) => len,
            Err(err) => {
                self.unify_tuples_after_error(lhs, rhs, &err, context, errors.by_ref());
                errors.push(err);
                return;
            }
        };

        if let (None, exact) = resolved_len.components() {
            self.unify_tuple_elements(lhs.iter(exact), rhs.iter(exact), context, errors);
        } else {
            // TODO: is this always applicable?
            for (lhs_elem, rhs_elem) in lhs.equal_elements_dyn(rhs) {
                let elem_errors = errors.join_path(match context {
                    TupleContext::Generic => ErrorPathFragment::TupleElement(None),
                    TupleContext::FnArgs => ErrorPathFragment::FnArg(None),
                });
                self.unify(lhs_elem, rhs_elem, elem_errors);
            }
        }
    }

    #[inline]
    fn unify_tuple_elements<'it>(
        &mut self,
        lhs_elements: impl Iterator<Item = &'it Type<Prim>>,
        rhs_elements: impl Iterator<Item = &'it Type<Prim>>,
        context: TupleContext,
        mut errors: OpErrors<'_, Prim>,
    ) {
        for (i, (lhs_elem, rhs_elem)) in lhs_elements.zip(rhs_elements).enumerate() {
            let location = context.element(i);
            self.unify(lhs_elem, rhs_elem, errors.join_path(location));
        }
    }

    /// Tries to unify tuple elements after an error has occurred when unifying their lengths.
    fn unify_tuples_after_error(
        &mut self,
        lhs: &Tuple<Prim>,
        rhs: &Tuple<Prim>,
        err: &ErrorKind<Prim>,
        context: TupleContext,
        errors: OpErrors<'_, Prim>,
    ) {
        let (lhs_len, rhs_len) = match err {
            ErrorKind::TupleLenMismatch {
                lhs: lhs_len,
                rhs: rhs_len,
                ..
            } => (*lhs_len, *rhs_len),
            _ => return,
        };
        let (lhs_var, lhs_exact) = lhs_len.components();
        let (rhs_var, rhs_exact) = rhs_len.components();

        match (lhs_var, rhs_var) {
            (None, None) => {
                // We've attempted to unify tuples with different known lengths.
                // Iterate over common elements and unify them.
                debug_assert_ne!(lhs_exact, rhs_exact);
                self.unify_tuple_elements(
                    lhs.iter(lhs_exact),
                    rhs.iter(rhs_exact),
                    context,
                    errors,
                );
            }

            (None, Some(UnknownLen::Dynamic)) => {
                // We've attempted to unify static LHS with a dynamic RHS
                // e.g., `(x, y) = filter(...)`.
                self.unify_tuple_elements(
                    lhs.iter(lhs_exact),
                    rhs.iter(rhs_exact),
                    context,
                    errors,
                );
            }

            _ => { /* Do nothing. */ }
        }
    }

    /// Returns the resolved length that `lhs` and `rhs` are equal to.
    fn unify_lengths(
        &mut self,
        lhs: TupleLen,
        rhs: TupleLen,
        context: TupleContext,
    ) -> Result<TupleLen, ErrorKind<Prim>> {
        let resolved_lhs = self.resolve_len(lhs);
        let resolved_rhs = self.resolve_len(rhs);

        self.unify_lengths_inner(resolved_lhs, resolved_rhs)
            .map_err(|err| match err {
                LenErrorKind::UnresolvedParam => ErrorKind::UnresolvedParam,
                LenErrorKind::Mismatch => ErrorKind::TupleLenMismatch {
                    lhs: resolved_lhs,
                    rhs: resolved_rhs,
                    context,
                },
                LenErrorKind::Dynamic(len) => ErrorKind::DynamicLen(len),
            })
    }

    fn unify_lengths_inner(
        &mut self,
        resolved_lhs: TupleLen,
        resolved_rhs: TupleLen,
    ) -> Result<TupleLen, LenErrorKind> {
        let (lhs_var, lhs_exact) = resolved_lhs.components();
        let (rhs_var, rhs_exact) = resolved_rhs.components();

        // First, consider a case when at least one of resolved lengths is exact.
        let (lhs_var, rhs_var) = match (lhs_var, rhs_var) {
            (Some(lhs_var), Some(rhs_var)) => (lhs_var, rhs_var),

            (Some(lhs_var), None) if rhs_exact >= lhs_exact => {
                return self
                    .unify_simple_length(lhs_var, TupleLen::from(rhs_exact - lhs_exact), true)
                    .map(|len| len + lhs_exact);
            }
            (None, Some(rhs_var)) if lhs_exact >= rhs_exact => {
                return self
                    .unify_simple_length(rhs_var, TupleLen::from(lhs_exact - rhs_exact), false)
                    .map(|len| len + rhs_exact);
            }

            (None, None) if lhs_exact == rhs_exact => return Ok(TupleLen::from(lhs_exact)),

            _ => return Err(LenErrorKind::Mismatch),
        };

        match lhs_exact.cmp(&rhs_exact) {
            Ordering::Equal => self.unify_simple_length(lhs_var, TupleLen::from(rhs_var), true),
            Ordering::Greater => {
                let reduced = lhs_var + (lhs_exact - rhs_exact);
                self.unify_simple_length(rhs_var, reduced, false)
                    .map(|len| len + rhs_exact)
            }
            Ordering::Less => {
                let reduced = rhs_var + (rhs_exact - lhs_exact);
                self.unify_simple_length(lhs_var, reduced, true)
                    .map(|len| len + lhs_exact)
            }
        }
    }

    fn unify_simple_length(
        &mut self,
        simple_len: UnknownLen,
        source: TupleLen,
        is_lhs: bool,
    ) -> Result<TupleLen, LenErrorKind> {
        match simple_len {
            UnknownLen::Var(var) if var.is_free() => self.unify_var_length(var.index(), source),
            UnknownLen::Dynamic => self.unify_dyn_length(source, is_lhs),
            _ => Err(LenErrorKind::UnresolvedParam),
        }
    }

    #[inline]
    fn unify_var_length(
        &mut self,
        var_idx: usize,
        source: TupleLen,
    ) -> Result<TupleLen, LenErrorKind> {
        // Check that the source is valid.
        match source.components() {
            (Some(UnknownLen::Var(var)), _) if !var.is_free() => Err(LenErrorKind::UnresolvedParam),

            // Special case is uniting a var with self.
            (Some(UnknownLen::Var(var)), offset) if var.index() == var_idx => {
                if offset == 0 {
                    Ok(source)
                } else {
                    Err(LenErrorKind::Mismatch)
                }
            }

            _ => {
                if self.static_lengths.contains(&var_idx) {
                    self.apply_static_len_inner(source)?;
                }
                self.length_eqs.insert(var_idx, source);
                Ok(source)
            }
        }
    }

    #[inline]
    fn unify_dyn_length(
        &mut self,
        source: TupleLen,
        is_lhs: bool,
    ) -> Result<TupleLen, LenErrorKind> {
        if is_lhs {
            Ok(source) // assignment to dyn length always succeeds
        } else {
            let source_var_idx = match source.components() {
                (Some(UnknownLen::Var(var)), 0) if var.is_free() => var.index(),
                (Some(UnknownLen::Dynamic), 0) => return Ok(source),
                _ => return Err(LenErrorKind::Mismatch),
            };
            self.unify_var_length(source_var_idx, UnknownLen::Dynamic.into())
        }
    }

    fn unify_objects(
        &mut self,
        lhs: &Object<Prim>,
        rhs: &Object<Prim>,
        mut errors: OpErrors<'_, Prim>,
    ) {
        let lhs_fields: HashSet<_> = lhs.field_names().collect();
        let rhs_fields: HashSet<_> = rhs.field_names().collect();

        if lhs_fields == rhs_fields {
            for (field_name, ty) in lhs.iter() {
                self.unify(ty, &rhs[field_name], errors.join_path(field_name));
            }
        } else {
            errors.push(ErrorKind::FieldsMismatch {
                lhs_fields: lhs_fields.into_iter().map(String::from).collect(),
                rhs_fields: rhs_fields.into_iter().map(String::from).collect(),
            });
        }
    }

    fn unify_fn_types(
        &mut self,
        lhs: &Function<Prim>,
        rhs: &Function<Prim>,
        mut errors: OpErrors<'_, Prim>,
    ) {
        if lhs.is_parametric() {
            errors.push(ErrorKind::UnsupportedParam);
            return;
        }

        let instantiated_lhs = self.instantiate_function(lhs);
        let instantiated_rhs = self.instantiate_function(rhs);

        // Swapping args is intentional. To see why, consider a function
        // `fn(T, U) -> V` called as `fn(A, B) -> C` (`T`, ... `C` are types).
        // In this case, the first arg of actual type `A` will be assigned to type `T`
        // (i.e., `T` is LHS and `A` is RHS); same with `U` and `B`. In contrast,
        // after function execution the return value of type `V` will be assigned
        // to type `C`. (I.e., unification of return values is not swapped.)
        self.unify_tuples(
            &instantiated_rhs.args,
            &instantiated_lhs.args,
            TupleContext::FnArgs,
            errors.by_ref(),
        );

        self.unify(
            &instantiated_lhs.return_type,
            &instantiated_rhs.return_type,
            errors.join_path(ErrorPathFragment::FnReturnType),
        );
    }

    /// Instantiates a functional type by replacing all type arguments with new type vars.
    fn instantiate_function(&mut self, fn_type: &Function<Prim>) -> Function<Prim> {
        if !fn_type.is_parametric() {
            // Fast path: just clone the function type.
            return fn_type.clone();
        }
        let fn_params = fn_type.params.as_ref().expect("fn with params");

        // Map type vars in the function into newly created type vars.
        let mapping = ParamMapping {
            types: fn_params
                .type_params
                .iter()
                .enumerate()
                .map(|(i, (var_idx, _))| (*var_idx, self.type_var_count + i))
                .collect(),
            lengths: fn_params
                .len_params
                .iter()
                .enumerate()
                .map(|(i, (var_idx, _))| (*var_idx, self.len_var_count + i))
                .collect(),
        };
        self.type_var_count += fn_params.type_params.len();
        self.len_var_count += fn_params.len_params.len();

        let mut instantiated_fn_type = fn_type.clone();
        MonoTypeTransformer::transform(&mapping, &mut instantiated_fn_type);

        // Copy constraints on the newly generated length and type vars
        // from the function definition.
        for (original_idx, is_static) in &fn_params.len_params {
            if *is_static {
                let new_idx = mapping.lengths[original_idx];
                self.static_lengths.insert(new_idx);
            }
        }
        for (original_idx, constraints) in &fn_params.type_params {
            let new_idx = mapping.types[original_idx];
            let mono_constraints =
                MonoTypeTransformer::transform_constraints(&mapping, constraints);
            self.constraints.insert(new_idx, mono_constraints);
        }

        instantiated_fn_type
    }

    /// Unifies a type variable with the specified index and the specified type.
    fn unify_var(
        &mut self,
        var_idx: usize,
        ty: &Type<Prim>,
        is_lhs: bool,
        mut errors: OpErrors<'_, Prim>,
    ) {
        // Variables should be resolved in `unify`.
        debug_assert!(is_lhs || !matches!(ty, Type::Any | Type::Dyn(_)));
        debug_assert!(!self.eqs.contains_key(&var_idx));
        debug_assert!(if let Type::Var(var) = ty {
            !self.eqs.contains_key(&var.index())
        } else {
            true
        });

        if let Type::Var(var) = ty {
            if !var.is_free() {
                errors.push(ErrorKind::UnresolvedParam);
                return;
            } else if var.index() == var_idx {
                return;
            }
        }

        let mut checker = OccurrenceChecker::new(self, iter::once(var_idx));
        checker.visit_type(ty);

        if let Some(var) = checker.recursive_var {
            self.handle_recursive_type(ty.clone(), var, &mut errors);
        } else {
            let mut ty = ty.clone();
            if !is_lhs {
                // We need to swap `any` types / lengths with new vars so that this type
                // can be specified further.
                TypeSpecifier::new(self).visit_type_mut(&mut ty);
            }
            self.eqs.insert(var_idx, ty.clone());

            // Constraints need to be applied *after* adding a type equation in order to
            // account for recursive constraints (e.g., object ones) - otherwise,
            // constraints on some type vars may be lost.
            // TODO: is it possible (or necessary?) to detect recursion in order to avoid cloning?
            if let Some(constraints) = self.constraints.get(&var_idx).cloned() {
                constraints.apply_all(&ty, self, errors);
            }
        }
    }
}

/// Checks if a type variable with the specified index is present in `ty`. This method
/// is used to check that types are not recursive.
#[derive(Debug)]
struct OccurrenceChecker<'a, Prim: PrimitiveType> {
    substitutions: &'a Substitutions<Prim>,
    var_indexes: HashSet<usize>,
    recursive_var: Option<usize>,
}

impl<'a, Prim: PrimitiveType> OccurrenceChecker<'a, Prim> {
    fn new(
        substitutions: &'a Substitutions<Prim>,
        var_indexes: impl IntoIterator<Item = usize>,
    ) -> Self {
        Self {
            substitutions,
            var_indexes: var_indexes.into_iter().collect(),
            recursive_var: None,
        }
    }
}

impl<Prim: PrimitiveType> Visit<Prim> for OccurrenceChecker<'_, Prim> {
    fn visit_type(&mut self, ty: &Type<Prim>) {
        if self.recursive_var.is_some() {
            // Skip recursion; we already have our answer at this point.
        } else {
            visit::visit_type(self, ty);
        }
    }

    fn visit_var(&mut self, var: TypeVar) {
        if !var.is_free() {
            // Can happen with assigned generic functions, e.g., `reduce = fold; ...`.
            return;
        }

        let var_idx = var.index();
        if self.var_indexes.contains(&var_idx) {
            self.recursive_var = Some(var_idx);
        } else if let Some(ty) = self.substitutions.eqs.get(&var_idx) {
            self.visit_type(ty);
        }
        // TODO: we don't check object constraints since they are fine (probably).
    }
}

/// Removes excessive information about type vars. This method is used when types are
/// provided to `Error`.
#[derive(Debug)]
struct TypeSanitizer {
    fixed_idx: usize,
}

impl TypeSanitizer {
    fn new(fixed_idx: usize) -> Self {
        Self { fixed_idx }
    }
}

impl<Prim: PrimitiveType> VisitMut<Prim> for TypeSanitizer {
    fn visit_type_mut(&mut self, ty: &mut Type<Prim>) {
        match ty {
            Type::Var(var) if var.index() == self.fixed_idx => {
                *ty = Type::param(0);
            }
            _ => visit::visit_type_mut(self, ty),
        }
    }
}

/// Visitor that performs type resolution based on `Substitutions`.
#[derive(Debug, Clone, Copy)]
struct TypeResolver<'a, Prim: PrimitiveType> {
    substitutions: &'a Substitutions<Prim>,
}

impl<Prim: PrimitiveType> VisitMut<Prim> for TypeResolver<'_, Prim> {
    fn visit_type_mut(&mut self, ty: &mut Type<Prim>) {
        let fast_resolved = self.substitutions.fast_resolve(ty);
        if !ptr::eq(ty, fast_resolved) {
            *ty = fast_resolved.clone();
        }
        visit::visit_type_mut(self, ty);
    }

    fn visit_middle_len_mut(&mut self, len: &mut TupleLen) {
        *len = self.substitutions.resolve_len(*len);
    }
}

#[derive(Debug, Clone, Copy, PartialEq)]
enum Variance {
    Co,
    Contra,
}

impl ops::Not for Variance {
    type Output = Self;

    fn not(self) -> Self {
        match self {
            Self::Co => Self::Contra,
            Self::Contra => Self::Co,
        }
    }
}

/// Visitor that swaps `any` types / lengths with new vars, but only if they are in a covariant
/// position (return types, args of function args, etc.).
///
/// This is used when assigning to a type containing `any`.
#[derive(Debug)]
struct TypeSpecifier<'a, Prim: PrimitiveType> {
    substitutions: &'a mut Substitutions<Prim>,
    variance: Variance,
}

impl<'a, Prim: PrimitiveType> TypeSpecifier<'a, Prim> {
    fn new(substitutions: &'a mut Substitutions<Prim>) -> Self {
        Self {
            substitutions,
            variance: Variance::Co,
        }
    }
}

impl<Prim: PrimitiveType> VisitMut<Prim> for TypeSpecifier<'_, Prim> {
    fn visit_type_mut(&mut self, ty: &mut Type<Prim>) {
        match ty {
            Type::Any if self.variance == Variance::Co => {
                *ty = self.substitutions.new_type_var();
            }

            Type::Dyn(constraints) if self.variance == Variance::Co => {
                let var_idx = self.substitutions.type_var_count;
                self.substitutions
                    .constraints
                    .insert(var_idx, constraints.inner.clone());
                *ty = Type::free_var(var_idx);
                self.substitutions.type_var_count += 1;
            }

            _ => visit::visit_type_mut(self, ty),
        }
    }

    fn visit_middle_len_mut(&mut self, len: &mut TupleLen) {
        if self.variance != Variance::Co {
            return;
        }
        if let (Some(var_len @ UnknownLen::Dynamic), _) = len.components_mut() {
            *var_len = self.substitutions.new_len_var();
        }
    }

    fn visit_function_mut(&mut self, function: &mut Function<Prim>) {
        // Since the visiting order doesn't matter, we visit the return type (which preserves
        // variance) first.
        self.visit_type_mut(&mut function.return_type);

        let old_variance = self.variance;
        self.variance = !self.variance;
        self.visit_tuple_mut(&mut function.args);
        self.variance = old_variance;
    }
}