1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
//! ASTs for type annotations and their parsing logic.
//!
//! # Overview
//!
//! This module contains types representing AST for parsed type annotations; for example,
//! [`TypeAst`] and [`FunctionAst`]. These two types expose `parse` method which
//! allows to integrate them into `nom` parsing.

use nom::{
    branch::alt,
    bytes::complete::{tag, take, take_until, take_while, take_while1, take_while_m_n},
    character::complete::char as tag_char,
    combinator::{cut, map, map_res, not, opt, peek, recognize},
    multi::{many0, separated_list0, separated_list1},
    sequence::{delimited, preceded, separated_pair, terminated, tuple},
};

use arithmetic_parser::{with_span, ErrorKind as ParseErrorKind, InputSpan, NomResult, Spanned};

mod conversion;
#[cfg(test)]
mod tests;

pub use self::conversion::AstConversionError;
pub(crate) use self::conversion::AstConversionState;

/// Type annotation after parsing.
///
/// Compared to [`Type`], this enum corresponds to AST, not to the logical presentation
/// of a type.
///
/// [`Type`]: crate::Type
///
/// # Examples
///
/// ```
/// use arithmetic_parser::InputSpan;
/// # use arithmetic_typing::ast::TypeAst;
/// # use assert_matches::assert_matches;
///
/// # fn main() -> anyhow::Result<()> {
/// let input = InputSpan::new("(Num, ('T) -> ('T, 'T))");
/// let (_, ty) = TypeAst::parse(input)?;
/// let TypeAst::Tuple(elements) = ty.extra else {
///     unreachable!();
/// };
/// assert_eq!(elements.start[0].extra, TypeAst::Ident);
/// assert_matches!(
///     &elements.start[1].extra,
///     TypeAst::Function { .. }
/// );
/// # Ok(())
/// # }
/// ```
#[derive(Debug, Clone, PartialEq)]
#[non_exhaustive]
pub enum TypeAst<'a> {
    /// Type placeholder (`_`). Corresponds to a certain type that is not specified, like `_`
    /// in type annotations in Rust.
    Some,
    /// Any type (`any`).
    Any,
    /// Dynamically applied constraints (`dyn _`).
    Dyn(TypeConstraintsAst<'a>),
    /// Non-ticked identifier, e.g., `Bool`.
    Ident,
    /// Ticked identifier, e.g., `'T`.
    Param,
    /// Functional type.
    Function(Box<FunctionAst<'a>>),
    /// Functional type with constraints.
    FunctionWithConstraints {
        /// Constraints on function params.
        constraints: Spanned<'a, ConstraintsAst<'a>>,
        /// Function body.
        function: Box<Spanned<'a, FunctionAst<'a>>>,
    },
    /// Tuple type; for example, `(Num, Bool)`.
    Tuple(TupleAst<'a>),
    /// Slice type; for example, `[Num]` or `[(Num, T); N]`.
    Slice(SliceAst<'a>),
    /// Object type; for example, `{ len: Num }`. Not to be confused with object constraints.
    Object(ObjectAst<'a>),
}

impl<'a> TypeAst<'a> {
    /// Parses `input` as a type. This parser can be composed using `nom` infrastructure.
    pub fn parse(input: InputSpan<'a>) -> NomResult<'a, Spanned<'a, Self>> {
        with_span(type_definition)(input)
    }
}

/// Spanned [`TypeAst`].
pub type SpannedTypeAst<'a> = Spanned<'a, TypeAst<'a>>;

/// Parsed tuple type, such as `(Num, Bool)` or `(fn() -> Num, ...[Num; _])`.
#[derive(Debug, Clone, PartialEq)]
pub struct TupleAst<'a> {
    /// Elements at the beginning of the tuple, e.g., `Num` and `Bool`
    /// in `(Num, Bool, ...[T; _])`.
    pub start: Vec<SpannedTypeAst<'a>>,
    /// Middle of the tuple, e.g., `[T; _]` in `(Num, Bool, ...[T; _])`.
    pub middle: Option<Spanned<'a, SliceAst<'a>>>,
    /// Elements at the end of the tuple, e.g., `Bool` in `(...[Num; _], Bool)`.
    /// Guaranteed to be empty if `middle` is not present.
    pub end: Vec<SpannedTypeAst<'a>>,
}

/// Parsed slice type, such as `[Num; N]`.
#[derive(Debug, Clone, PartialEq)]
pub struct SliceAst<'a> {
    /// Element of this slice; for example, `Num` in `[Num; N]`.
    pub element: Box<SpannedTypeAst<'a>>,
    /// Length of this slice; for example, `N` in `[Num; N]`.
    pub length: Spanned<'a, TupleLenAst>,
}

/// Parsed functional type.
///
/// In contrast to [`Function`], this struct corresponds to AST, not to the logical representation
/// of functional types.
///
/// [`Function`]: crate::Function
///
/// # Examples
///
/// ```
/// use arithmetic_parser::InputSpan;
/// # use assert_matches::assert_matches;
/// # use arithmetic_typing::ast::{FunctionAst, TypeAst};
///
/// # fn main() -> anyhow::Result<()> {
/// let input = InputSpan::new("([Num; N]) -> Num");
/// let (rest, ty) = FunctionAst::parse(input)?;
/// assert!(rest.fragment().is_empty());
/// assert_matches!(ty.args.extra.start[0].extra, TypeAst::Slice(_));
/// assert_eq!(ty.return_type.extra, TypeAst::Ident);
/// # Ok(())
/// # }
/// ```
#[derive(Debug, Clone, PartialEq)]
#[non_exhaustive]
pub struct FunctionAst<'a> {
    /// Function arguments.
    pub args: Spanned<'a, TupleAst<'a>>,
    /// Return type of the function.
    pub return_type: SpannedTypeAst<'a>,
}

impl<'a> FunctionAst<'a> {
    /// Parses `input` as a functional type. This parser can be composed using `nom` infrastructure.
    pub fn parse(input: InputSpan<'a>) -> NomResult<'a, Self> {
        fn_definition(input)
    }
}

/// Parsed tuple length.
#[derive(Debug, Clone, PartialEq, Eq)]
#[non_exhaustive]
pub enum TupleLenAst {
    /// Length placeholder (`_`). Corresponds to any single length.
    Some,
    /// Dynamic tuple length. This length is *implicit*, as in `[Num]`. As such, it has
    /// an empty span.
    Dynamic,
    /// Reference to a length; for example, `N` in `[Num; N]`.
    Ident,
}

/// Parameter constraints, e.g. `for<len! N; T: Lin>`.
#[derive(Debug, Clone, PartialEq)]
#[non_exhaustive]
pub struct ConstraintsAst<'a> {
    /// Static lengths, e.g., `N` in `for<len! N>`.
    pub static_lengths: Vec<Spanned<'a>>,
    /// Type constraints.
    pub type_params: Vec<(Spanned<'a>, TypeConstraintsAst<'a>)>,
}

/// Bounds that can be placed on a type variable.
#[derive(Debug, Default, Clone, PartialEq)]
#[non_exhaustive]
pub struct TypeConstraintsAst<'a> {
    /// Object constraint, such as `{ x: 'T }`.
    pub object: Option<ObjectAst<'a>>,
    /// Spans corresponding to constraints, e.g. `Foo` and `Bar` in `Foo + Bar`.
    pub terms: Vec<Spanned<'a>>,
}

/// Object type or constraint, such as `{ x: Num, y: [(Num, Bool)] }`.
#[derive(Debug, Clone, PartialEq)]
#[non_exhaustive]
pub struct ObjectAst<'a> {
    /// Fields of the object.
    pub fields: Vec<(Spanned<'a>, SpannedTypeAst<'a>)>,
}

/// Whitespace and comments.
fn ws(input: InputSpan<'_>) -> NomResult<'_, InputSpan<'_>> {
    fn narrow_ws(input: InputSpan<'_>) -> NomResult<'_, InputSpan<'_>> {
        take_while1(|c: char| c.is_ascii_whitespace())(input)
    }

    fn long_comment_body(input: InputSpan<'_>) -> NomResult<'_, InputSpan<'_>> {
        cut(take_until("*/"))(input)
    }

    let comment = preceded(tag("//"), take_while(|c: char| c != '\n'));
    let long_comment = delimited(tag("/*"), long_comment_body, tag("*/"));
    let ws_line = alt((narrow_ws, comment, long_comment));
    recognize(many0(ws_line))(input)
}

/// Comma separator.
fn comma_sep(input: InputSpan<'_>) -> NomResult<'_, char> {
    delimited(ws, tag_char(','), ws)(input)
}

fn ident(input: InputSpan<'_>) -> NomResult<'_, Spanned<'_>> {
    preceded(
        peek(take_while_m_n(1, 1, |c: char| {
            c.is_ascii_alphabetic() || c == '_'
        })),
        map(
            take_while1(|c: char| c.is_ascii_alphanumeric() || c == '_'),
            Spanned::from,
        ),
    )(input)
}

fn not_keyword(input: InputSpan<'_>) -> NomResult<'_, Spanned<'_>> {
    map_res(ident, |ident| {
        if *ident.fragment() == "as" {
            Err(ParseErrorKind::Type(anyhow::anyhow!(
                "`as` is a reserved keyword"
            )))
        } else {
            Ok(ident)
        }
    })(input)
}

fn type_param_ident(input: InputSpan<'_>) -> NomResult<'_, Spanned<'_>> {
    preceded(tag_char('\''), ident)(input)
}

fn comma_separated_types(input: InputSpan<'_>) -> NomResult<'_, Vec<SpannedTypeAst<'_>>> {
    separated_list0(delimited(ws, tag_char(','), ws), with_span(type_definition))(input)
}

fn tuple_middle(input: InputSpan<'_>) -> NomResult<'_, Spanned<'_, SliceAst<'_>>> {
    preceded(terminated(tag("..."), ws), with_span(slice_definition))(input)
}

type TupleTailAst<'a> = (Spanned<'a, SliceAst<'a>>, Vec<SpannedTypeAst<'a>>);

fn tuple_tail(input: InputSpan<'_>) -> NomResult<'_, TupleTailAst<'_>> {
    tuple((
        tuple_middle,
        map(
            opt(preceded(comma_sep, comma_separated_types)),
            Option::unwrap_or_default,
        ),
    ))(input)
}

fn tuple_definition(input: InputSpan<'_>) -> NomResult<'_, TupleAst<'_>> {
    let maybe_comma = opt(comma_sep);

    let main_parser = alt((
        map(tuple_tail, |(middle, end)| TupleAst {
            start: Vec::new(),
            middle: Some(middle),
            end,
        }),
        map(
            tuple((comma_separated_types, opt(preceded(comma_sep, tuple_tail)))),
            |(start, maybe_tail)| {
                if let Some((middle, end)) = maybe_tail {
                    TupleAst {
                        start,
                        middle: Some(middle),
                        end,
                    }
                } else {
                    TupleAst {
                        start,
                        middle: None,
                        end: Vec::new(),
                    }
                }
            },
        ),
    ));

    preceded(
        terminated(tag_char('('), ws),
        // Once we've encountered the opening `(`, the input *must* correspond to the parser.
        cut(terminated(
            main_parser,
            tuple((maybe_comma, ws, tag_char(')'))),
        )),
    )(input)
}

fn tuple_len(input: InputSpan<'_>) -> NomResult<'_, Spanned<'_, TupleLenAst>> {
    let semicolon = tuple((ws, tag_char(';'), ws));
    let empty = map(take(0_usize), Spanned::from);
    map(alt((preceded(semicolon, not_keyword), empty)), |id| {
        id.map_extra(|()| match *id.fragment() {
            "_" => TupleLenAst::Some,
            "" => TupleLenAst::Dynamic,
            _ => TupleLenAst::Ident,
        })
    })(input)
}

fn slice_definition(input: InputSpan<'_>) -> NomResult<'_, SliceAst<'_>> {
    preceded(
        terminated(tag_char('['), ws),
        // Once we've encountered the opening `[`, the input *must* correspond to the parser.
        cut(terminated(
            map(
                tuple((with_span(type_definition), tuple_len)),
                |(element, length)| SliceAst {
                    element: Box::new(element),
                    length,
                },
            ),
            tuple((ws, tag_char(']'))),
        )),
    )(input)
}

fn object(input: InputSpan<'_>) -> NomResult<'_, ObjectAst<'_>> {
    let colon = tuple((ws, tag_char(':'), ws));
    let object_field = separated_pair(ident, colon, with_span(type_definition));
    let object_body = terminated(separated_list1(comma_sep, object_field), opt(comma_sep));
    let object = preceded(
        terminated(tag_char('{'), ws),
        cut(terminated(object_body, tuple((ws, tag_char('}'))))),
    );
    map(object, |fields| ObjectAst { fields })(input)
}

fn constraint_sep(input: InputSpan<'_>) -> NomResult<'_, ()> {
    map(tuple((ws, tag_char('+'), ws)), drop)(input)
}

fn simple_type_bounds(input: InputSpan<'_>) -> NomResult<'_, TypeConstraintsAst<'_>> {
    map(separated_list1(constraint_sep, not_keyword), |terms| {
        TypeConstraintsAst {
            object: None,
            terms,
        }
    })(input)
}

fn type_bounds(input: InputSpan<'_>) -> NomResult<'_, TypeConstraintsAst<'_>> {
    alt((
        map(
            tuple((
                object,
                opt(preceded(
                    constraint_sep,
                    separated_list1(constraint_sep, not_keyword),
                )),
            )),
            |(object, terms)| TypeConstraintsAst {
                object: Some(object),
                terms: terms.unwrap_or_default(),
            },
        ),
        simple_type_bounds,
    ))(input)
}

fn type_params(input: InputSpan<'_>) -> NomResult<'_, Vec<(Spanned<'_>, TypeConstraintsAst<'_>)>> {
    let type_bounds = preceded(tuple((ws, tag_char(':'), ws)), type_bounds);
    let type_param = tuple((type_param_ident, type_bounds));
    separated_list1(comma_sep, type_param)(input)
}

/// Function params, including the `for` keyword and `<>` brackets.
fn constraints(input: InputSpan<'_>) -> NomResult<'_, ConstraintsAst<'_>> {
    let semicolon = tuple((ws, tag_char(';'), ws));

    let len_params = preceded(
        terminated(tag("len!"), ws),
        separated_list1(comma_sep, not_keyword),
    );

    let params_parser = alt((
        map(
            tuple((len_params, opt(preceded(semicolon, type_params)))),
            |(static_lengths, type_params)| (static_lengths, type_params.unwrap_or_default()),
        ),
        map(type_params, |type_params| (vec![], type_params)),
    ));

    let constraints_parser = tuple((
        terminated(tag("for"), ws),
        terminated(tag_char('<'), ws),
        cut(terminated(params_parser, tuple((ws, tag_char('>'))))),
    ));

    map(
        constraints_parser,
        |(_, _, (static_lengths, type_params))| ConstraintsAst {
            static_lengths,
            type_params,
        },
    )(input)
}

fn return_type(input: InputSpan<'_>) -> NomResult<'_, SpannedTypeAst<'_>> {
    preceded(tuple((ws, tag("->"), ws)), cut(with_span(type_definition)))(input)
}

fn fn_or_tuple(input: InputSpan<'_>) -> NomResult<'_, TypeAst<'_>> {
    map(
        tuple((with_span(tuple_definition), opt(return_type))),
        |(args, return_type)| {
            if let Some(return_type) = return_type {
                TypeAst::Function(Box::new(FunctionAst { args, return_type }))
            } else {
                TypeAst::Tuple(args.extra)
            }
        },
    )(input)
}

fn fn_definition(input: InputSpan<'_>) -> NomResult<'_, FunctionAst<'_>> {
    map(
        tuple((with_span(tuple_definition), return_type)),
        |(args, return_type)| FunctionAst { args, return_type },
    )(input)
}

fn fn_definition_with_constraints(input: InputSpan<'_>) -> NomResult<'_, TypeAst<'_>> {
    map(
        tuple((with_span(constraints), ws, cut(with_span(fn_definition)))),
        |(constraints, _, function)| TypeAst::FunctionWithConstraints {
            constraints,
            function: Box::new(function),
        },
    )(input)
}

fn not_ident_char(input: InputSpan<'_>) -> NomResult<'_, ()> {
    peek(not(take_while_m_n(1, 1, |c: char| {
        c.is_ascii_alphanumeric() || c == '_'
    })))(input)
}

fn any_type(input: InputSpan<'_>) -> NomResult<'_, ()> {
    terminated(map(tag("any"), drop), not_ident_char)(input)
}

fn dyn_type(input: InputSpan<'_>) -> NomResult<'_, TypeConstraintsAst<'_>> {
    map(
        preceded(
            terminated(tag("dyn"), not_ident_char),
            opt(preceded(ws, type_bounds)),
        ),
        Option::unwrap_or_default,
    )(input)
}

fn free_ident(input: InputSpan<'_>) -> NomResult<'_, TypeAst<'_>> {
    map(not_keyword, |id| match *id.fragment() {
        "_" => TypeAst::Some,
        _ => TypeAst::Ident,
    })(input)
}

fn type_definition(input: InputSpan<'_>) -> NomResult<'_, TypeAst<'_>> {
    alt((
        fn_or_tuple,
        fn_definition_with_constraints,
        map(type_param_ident, |_| TypeAst::Param),
        map(slice_definition, TypeAst::Slice),
        map(object, TypeAst::Object),
        map(dyn_type, TypeAst::Dyn),
        map(any_type, |()| TypeAst::Any),
        free_ident,
    ))(input)
}