1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230
//! `TypeEnvironment` and related types.
use core::ops;
use arithmetic_parser::{grammars::Grammar, Block};
use self::processor::TypeProcessor;
use crate::{
alloc::{HashMap, String, ToOwned},
arith::{
Constraint, ConstraintSet, MapPrimitiveType, Num, NumArithmetic, ObjectSafeConstraint,
Substitutions, TypeArithmetic,
},
ast::TypeAst,
error::Errors,
types::{ParamConstraints, ParamQuantifier},
visit::VisitMut,
Function, PrimitiveType, Type,
};
mod processor;
/// Environment containing type information on named variables.
///
/// # Examples
///
/// See [the crate docs](index.html#examples) for examples of usage.
///
/// # Concrete and partially specified types
///
/// The environment retains full info on the types even if the type is not
/// [concrete](Type::is_concrete()). Non-concrete types are tied to an environment.
/// An environment will panic on inserting a non-concrete type via [`Self::insert()`]
/// or other methods.
///
/// ```
/// # use arithmetic_parser::grammars::{F32Grammar, Parse};
/// # use arithmetic_typing::{defs::Prelude, Annotated, TypeEnvironment};
/// # type Parser = Annotated<F32Grammar>;
/// # fn main() -> anyhow::Result<()> {
/// // An easy way to get a non-concrete type is to involve `any`.
/// let code = "(x, ...) = (1, 2, 3) as any;";
/// let code = Parser::parse_statements(code)?;
///
/// let mut env: TypeEnvironment = Prelude::iter().collect();
/// env.process_statements(&code)?;
/// assert!(!env["x"].is_concrete());
/// # Ok(())
/// # }
/// ```
#[derive(Debug, Clone)]
pub struct TypeEnvironment<Prim: PrimitiveType = Num> {
pub(crate) substitutions: Substitutions<Prim>,
pub(crate) known_constraints: ConstraintSet<Prim>,
variables: HashMap<String, Type<Prim>>,
}
impl<Prim: PrimitiveType> Default for TypeEnvironment<Prim> {
fn default() -> Self {
Self {
variables: HashMap::new(),
known_constraints: Prim::well_known_constraints(),
substitutions: Substitutions::default(),
}
}
}
impl<Prim: PrimitiveType> TypeEnvironment<Prim> {
/// Creates an empty environment.
pub fn new() -> Self {
Self::default()
}
/// Gets type of the specified variable.
pub fn get(&self, name: &str) -> Option<&Type<Prim>> {
self.variables.get(name)
}
/// Iterates over variables contained in this env.
pub fn iter(&self) -> impl Iterator<Item = (&str, &Type<Prim>)> + '_ {
self.variables.iter().map(|(name, ty)| (name.as_str(), ty))
}
fn prepare_type(ty: impl Into<Type<Prim>>) -> Type<Prim> {
let mut ty = ty.into();
assert!(ty.is_concrete(), "Type {ty} is not concrete");
TypePreparer.visit_type_mut(&mut ty);
ty
}
/// Sets type of a variable.
///
/// # Panics
///
/// - Will panic if `ty` is not [concrete](Type::is_concrete()). Non-concrete
/// types are tied to the environment; inserting them into an env is a logical error.
pub fn insert(&mut self, name: &str, ty: impl Into<Type<Prim>>) -> &mut Self {
self.variables
.insert(name.to_owned(), Self::prepare_type(ty));
self
}
/// Inserts a [`Constraint`] into the environment so that it can be used when parsing
/// type annotations.
///
/// Adding a constraint is not mandatory for it to be usable during type inference;
/// this method only influences whether the constraint is recognized during type parsing.
pub fn insert_constraint(&mut self, constraint: impl Constraint<Prim>) -> &mut Self {
self.known_constraints.insert(constraint);
self
}
/// Inserts an [`ObjectSafeConstraint`] into the environment so that it can be used
/// when parsing type annotations.
///
/// Other than more strict type requirements, this method is identical to
/// [`Self::insert_constraint`].
pub fn insert_object_safe_constraint(
&mut self,
constraint: impl ObjectSafeConstraint<Prim>,
) -> &mut Self {
self.known_constraints.insert_object_safe(constraint);
self
}
/// Processes statements with the default type arithmetic. After processing, the environment
/// will contain type info about newly declared vars.
///
/// This method is a shortcut for calling `process_with_arithmetic` with
/// [`NumArithmetic::without_comparisons()`].
pub fn process_statements<'a, T>(
&mut self,
block: &Block<'a, T>,
) -> Result<Type<Prim>, Errors<Prim>>
where
T: Grammar<Type<'a> = TypeAst<'a>>,
NumArithmetic: MapPrimitiveType<T::Lit, Prim = Prim> + TypeArithmetic<Prim>,
{
self.process_with_arithmetic(&NumArithmetic::without_comparisons(), block)
}
/// Processes statements with a given `arithmetic`. After processing, the environment
/// will contain type info about newly declared vars.
///
/// # Errors
///
/// Even if there are any type errors, all statements in the `block` will be executed
/// to completion and all errors will be reported. However, the environment will **not**
/// include any vars beyond the first failing statement.
pub fn process_with_arithmetic<'a, T, A>(
&mut self,
arithmetic: &A,
block: &Block<'a, T>,
) -> Result<Type<Prim>, Errors<Prim>>
where
T: Grammar<Type<'a> = TypeAst<'a>>,
A: MapPrimitiveType<T::Lit, Prim = Prim> + TypeArithmetic<Prim>,
{
TypeProcessor::new(self, arithmetic).process_statements(block)
}
}
impl<Prim: PrimitiveType> ops::Index<&str> for TypeEnvironment<Prim> {
type Output = Type<Prim>;
fn index(&self, name: &str) -> &Self::Output {
self.get(name)
.unwrap_or_else(|| panic!("Variable `{name}` is not defined"))
}
}
/// Fills in parameters in all encountered top-level functions within a type.
#[derive(Debug)]
struct TypePreparer;
impl<Prim: PrimitiveType> VisitMut<Prim> for TypePreparer {
fn visit_function_mut(&mut self, function: &mut Function<Prim>) {
if function.params.is_none() {
ParamQuantifier::fill_params(function, ParamConstraints::default());
}
// We intentionally do not recurse into functions; this is done within `ParamQuantifier`.
}
}
fn convert_iter<Prim: PrimitiveType, S, Ty, I>(
iter: I,
) -> impl Iterator<Item = (String, Type<Prim>)>
where
I: IntoIterator<Item = (S, Ty)>,
S: Into<String>,
Ty: Into<Type<Prim>>,
{
iter.into_iter()
.map(|(name, ty)| (name.into(), TypeEnvironment::prepare_type(ty)))
}
impl<Prim: PrimitiveType, S, Ty> FromIterator<(S, Ty)> for TypeEnvironment<Prim>
where
S: Into<String>,
Ty: Into<Type<Prim>>,
{
fn from_iter<I: IntoIterator<Item = (S, Ty)>>(iter: I) -> Self {
Self {
variables: convert_iter(iter).collect(),
known_constraints: Prim::well_known_constraints(),
substitutions: Substitutions::default(),
}
}
}
impl<Prim: PrimitiveType, S, Ty> Extend<(S, Ty)> for TypeEnvironment<Prim>
where
S: Into<String>,
Ty: Into<Type<Prim>>,
{
fn extend<I: IntoIterator<Item = (S, Ty)>>(&mut self, iter: I) {
self.variables.extend(convert_iter(iter));
}
}
// Helper trait to wrap type mapper and arithmetic.
trait FullArithmetic<Val, Prim: PrimitiveType>:
MapPrimitiveType<Val, Prim = Prim> + TypeArithmetic<Prim>
{
}
impl<Val, Prim: PrimitiveType, T> FullArithmetic<Val, Prim> for T where
T: MapPrimitiveType<Val, Prim = Prim> + TypeArithmetic<Prim>
{
}