1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258
//! `ErrorKind` and tightly related types.
use core::fmt;
use arithmetic_parser::UnsupportedType;
use crate::{
alloc::{Box, HashSet, String},
arith::Constraint,
ast::AstConversionError,
error::ErrorPathFragment,
PrimitiveType, TupleIndex, TupleLen, Type,
};
/// Context in which a tuple is used.
#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
#[non_exhaustive]
pub enum TupleContext {
/// Generic tuple use: assignment, destructuring, or creating a tuple from elements.
Generic,
/// The tuple represents function arguments.
FnArgs,
}
impl TupleContext {
pub(crate) fn element(self, index: usize) -> ErrorPathFragment {
let index = TupleIndex::Start(index);
match self {
Self::Generic => ErrorPathFragment::TupleElement(Some(index)),
Self::FnArgs => ErrorPathFragment::FnArg(Some(index)),
}
}
pub(crate) fn end_element(self, index: usize) -> ErrorPathFragment {
let index = TupleIndex::End(index);
match self {
Self::Generic => ErrorPathFragment::TupleElement(Some(index)),
Self::FnArgs => ErrorPathFragment::FnArg(Some(index)),
}
}
}
/// Kinds of errors that can occur during type inference.
#[derive(Debug, Clone)]
#[non_exhaustive]
pub enum ErrorKind<Prim: PrimitiveType> {
/// Trying to unify incompatible types. The first type is LHS, the second one is RHS.
TypeMismatch(Type<Prim>, Type<Prim>),
/// Incompatible tuple lengths.
TupleLenMismatch {
/// Length of the LHS. This is the length determined by type annotations
/// for assignments and the number of actually supplied args in function calls.
lhs: TupleLen,
/// Length of the RHS. This is usually the actual tuple length in assignments
/// and the number of expected args in function calls.
rhs: TupleLen,
/// Context in which the error has occurred.
context: TupleContext,
},
/// Undefined variable occurrence.
UndefinedVar(String),
/// Trying to unify a type with a type containing it.
RecursiveType(Type<Prim>),
/// Repeated assignment to the same variable in function args or tuple destructuring.
RepeatedAssignment(String),
/// Field name is invalid.
InvalidFieldName(String),
/// Value cannot be indexed (i.e., not a tuple).
CannotIndex,
/// Unsupported indexing operation. For example, the receiver type is not known,
/// or it is a tuple with an unknown length, and the type of the element cannot be decided.
UnsupportedIndex,
/// Index is out of bounds for the indexed tuple.
IndexOutOfBounds {
/// Index.
index: usize,
/// Actual tuple length.
len: TupleLen,
},
/// Repeated field in object initialization / destructuring.
RepeatedField(String),
/// Cannot access fields in a value (i.e., it's not an object).
CannotAccessFields,
/// Field set differs between LHS and RHS, which are both concrete objects.
FieldsMismatch {
/// Fields in LHS.
lhs_fields: HashSet<String>,
/// Fields in RHS.
rhs_fields: HashSet<String>,
},
/// Concrete object does not have required fields.
MissingFields {
/// Missing fields.
fields: HashSet<String>,
/// Available object fields.
available_fields: HashSet<String>,
},
/// Mention of a bounded type or length variable in a type supplied
/// to [`Substitutions::unify()`].
///
/// Bounded variables are instantiated into free vars automatically during
/// type inference, so this error
/// can only occur with types manually supplied to `Substitutions::unify()`.
///
/// [`Substitutions::unify()`]: crate::arith::Substitutions::unify()
UnresolvedParam,
/// Failure when applying constraint to a type.
FailedConstraint {
/// Type that fails constraint requirement.
ty: Type<Prim>,
/// Failing constraint.
constraint: Box<dyn Constraint<Prim>>,
},
/// Length with the static constraint is actually dynamic (contains [`UnknownLen::Dynamic`]).
///
/// [`UnknownLen::Dynamic`]: crate::UnknownLen::Dynamic
DynamicLen(TupleLen),
/// Language feature not supported by type inference logic.
UnsupportedFeature(UnsupportedType),
/// Type not supported by type inference logic. For example,
/// a [`TypeArithmetic`] or [`Constraint`] implementations may return this error
/// if they encounter an unknown [`Type`] variant.
///
/// [`TypeArithmetic`]: crate::arith::TypeArithmetic
/// [`Constraint`]: crate::arith::Constraint
UnsupportedType(Type<Prim>),
/// Unsupported use of type or length params in a function declaration.
///
/// Type or length params are currently not supported in type annotations. Here's an example
/// of code that triggers this error:
///
/// ```text
/// identity: (('T,)) -> ('T,) = |x| x;
/// ```
UnsupportedParam,
/// Error while instantiating a type from AST.
AstConversion(AstConversionError),
}
impl<Prim: PrimitiveType> fmt::Display for ErrorKind<Prim> {
fn fmt(&self, formatter: &mut fmt::Formatter<'_>) -> fmt::Result {
match self {
Self::TypeMismatch(lhs, rhs) => write!(
formatter,
"Type `{rhs}` is not assignable to type `{lhs}`"
),
Self::TupleLenMismatch {
lhs,
rhs,
context: TupleContext::FnArgs,
} => write!(
formatter,
"Function expects {lhs} args, but is called with {rhs} args"
),
Self::TupleLenMismatch { lhs, rhs, .. } => write!(
formatter,
"Expected a tuple with {lhs} elements, got one with {rhs} elements"
),
Self::UndefinedVar(name) => write!(formatter, "Variable `{name}` is not defined"),
Self::RecursiveType(ty) => write!(
formatter,
"Cannot unify type 'T with a type containing it: {ty}"
),
Self::RepeatedAssignment(name) => {
write!(
formatter,
"Repeated assignment to the same variable `{name}`"
)
}
Self::InvalidFieldName(name) => {
write!(formatter, "`{name}` is not a valid field name")
}
Self::CannotIndex => formatter.write_str("Value cannot be indexed"),
Self::UnsupportedIndex => formatter.write_str("Unsupported indexing operation"),
Self::IndexOutOfBounds { index, len } => write!(
formatter,
"Attempting to get element {index} from tuple with length {len}"
),
Self::RepeatedField(name) => write!(formatter, "Repeated object field `{name}`"),
Self::CannotAccessFields => formatter.write_str("Value is not an object"),
Self::FieldsMismatch {
lhs_fields,
rhs_fields,
} => write!(
formatter,
"Cannot assign object with fields {rhs_fields:?} to object with fields {lhs_fields:?}"
),
Self::MissingFields {
fields,
available_fields,
} => write!(
formatter,
"Missing field(s) {fields:?} from object (available fields: {available_fields:?})"
),
Self::UnresolvedParam => {
formatter.write_str("Params not instantiated into variables cannot be unified")
}
Self::FailedConstraint { ty, constraint } => {
write!(formatter, "Type `{ty}` fails constraint `{constraint}`")
}
Self::DynamicLen(len) => {
write!(formatter, "Length `{len}` is required to be static")
}
Self::UnsupportedFeature(ty) => write!(formatter, "Unsupported {ty}"),
Self::UnsupportedType(ty) => write!(formatter, "Unsupported type: {ty}"),
Self::UnsupportedParam => {
formatter.write_str("Params in declared function types are not supported yet")
}
Self::AstConversion(err) => write!(
formatter,
"Error instantiating type from annotation: {err}"
),
}
}
}
#[cfg(feature = "std")]
impl<Prim: PrimitiveType> std::error::Error for ErrorKind<Prim> {
fn source(&self) -> Option<&(dyn std::error::Error + 'static)> {
match self {
Self::AstConversion(err) => Some(err),
_ => None,
}
}
}
impl<Prim: PrimitiveType> ErrorKind<Prim> {
/// Creates an error for an lvalue type not supported by the interpreter.
pub fn unsupported<T: Into<UnsupportedType>>(ty: T) -> Self {
Self::UnsupportedFeature(ty.into())
}
/// Creates a "failed constraint" error.
pub fn failed_constraint(ty: Type<Prim>, constraint: impl Constraint<Prim> + Clone) -> Self {
Self::FailedConstraint {
ty,
constraint: Box::new(constraint),
}
}
}