1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
//! Functional type (`Function`) and closely related types.

use std::{
    collections::{HashMap, HashSet},
    fmt,
    sync::Arc,
};

use crate::{
    arith::{CompleteConstraints, Constraint, ConstraintSet, Num},
    types::ParamQuantifier,
    LengthVar, PrimitiveType, Tuple, TupleLen, Type, TypeVar,
};

#[derive(Debug, Clone)]
pub(crate) struct ParamConstraints<Prim: PrimitiveType> {
    pub type_params: HashMap<usize, CompleteConstraints<Prim>>,
    pub static_lengths: HashSet<usize>,
}

impl<Prim: PrimitiveType> Default for ParamConstraints<Prim> {
    fn default() -> Self {
        Self {
            type_params: HashMap::new(),
            static_lengths: HashSet::new(),
        }
    }
}

impl<Prim: PrimitiveType> fmt::Display for ParamConstraints<Prim> {
    fn fmt(&self, formatter: &mut fmt::Formatter<'_>) -> fmt::Result {
        if !self.static_lengths.is_empty() {
            formatter.write_str("len! ")?;
            for (i, len) in self.static_lengths.iter().enumerate() {
                write!(formatter, "{}", LengthVar::param_str(*len))?;
                if i + 1 < self.static_lengths.len() {
                    formatter.write_str(", ")?;
                }
            }

            if !self.type_params.is_empty() {
                formatter.write_str("; ")?;
            }
        }

        let type_param_count = self.type_params.len();
        for (i, (idx, constraints)) in self.type_params().enumerate() {
            write!(formatter, "'{}: {constraints}", TypeVar::param_str(idx))?;
            if i + 1 < type_param_count {
                formatter.write_str(", ")?;
            }
        }

        Ok(())
    }
}

impl<Prim: PrimitiveType> ParamConstraints<Prim> {
    fn is_empty(&self) -> bool {
        self.type_params.is_empty() && self.static_lengths.is_empty()
    }

    fn type_params(&self) -> impl Iterator<Item = (usize, &CompleteConstraints<Prim>)> + '_ {
        let mut type_params: Vec<_> = self.type_params.iter().map(|(&idx, c)| (idx, c)).collect();
        type_params.sort_unstable_by_key(|(idx, _)| *idx);
        type_params.into_iter()
    }
}

#[derive(Debug)]
pub(crate) struct FnParams<Prim: PrimitiveType> {
    /// Type params associated with this function. Filled in by `FnQuantifier`.
    pub type_params: Vec<(usize, CompleteConstraints<Prim>)>,
    /// Length params associated with this function. Filled in by `FnQuantifier`.
    pub len_params: Vec<(usize, bool)>,
    /// Constraints for params of this function and child functions.
    pub constraints: Option<ParamConstraints<Prim>>,
}

impl<Prim: PrimitiveType> Default for FnParams<Prim> {
    fn default() -> Self {
        Self {
            type_params: vec![],
            len_params: vec![],
            constraints: None,
        }
    }
}

impl<Prim: PrimitiveType> PartialEq for FnParams<Prim> {
    fn eq(&self, other: &Self) -> bool {
        self.type_params == other.type_params && self.len_params == other.len_params
    }
}

impl<Prim: PrimitiveType> FnParams<Prim> {
    fn is_empty(&self) -> bool {
        self.len_params.is_empty() && self.type_params.is_empty()
    }
}

/// Functional type.
///
/// # Notation
///
/// Functional types are denoted as follows:
///
/// ```text
/// for<len! M; 'T: Lin> (['T; N], 'T) -> ['T; M]
/// ```
///
/// Here:
///
/// - `len! M` and `'T: Lin` are constraints on [length params] and [type params], respectively.
///   Length and/or type params constraints may be empty. Unconstrained type / length params
///   (such as length `N` in the example) do not need to be mentioned.
/// - `len! M` means that `M` is a [static length](TupleLen#static-lengths).
/// - `Lin` is a [constraint] on the type param.
/// - `N`, `M` and `'T` are parameter names. The args and the return type may reference these
///   parameters.
/// - `['T; N]` and `'T` are types of the function arguments.
/// - `['T; M]` is the return type.
///
/// The `for` constraints can only be present on top-level functions, but not in functions
/// mentioned in args / return types of other functions.
///
/// The `-> _` part is mandatory, even if the function returns [`Type::void()`].
///
/// A function may accept variable number of arguments of the same type along
/// with other args. (This construction is known as *varargs*.) This is denoted similarly
/// to middles in [`Tuple`]s. For example, `(...[Num; N]) -> Num` denotes a function
/// that accepts any number of `Num` args and returns a `Num` value.
///
/// [length params]: crate::LengthVar
/// [type params]: crate::TypeVar
/// [constraint]: crate::arith::Constraint
/// [dynamic length]: crate::TupleLen#static-lengths
///
/// # Construction
///
/// Functional types can be constructed via [`Self::builder()`] or parsed from a string.
///
/// With [`Self::builder()`], type / length params are *implicit*; they are computed automatically
/// when a function or [`FnWithConstraints`] is supplied to a [`TypeEnvironment`]. Computations
/// include both the function itself, and any child functions.
///
/// [`TypeEnvironment`]: crate::TypeEnvironment
///
/// # Examples
///
/// ```
/// # use arithmetic_typing::{ast::FunctionAst, Function, Slice, Type};
/// # use std::convert::TryFrom;
/// # use assert_matches::assert_matches;
/// # fn main() -> anyhow::Result<()> {
/// let fn_type: Function = FunctionAst::try_from("([Num; N]) -> Num")?
///     .try_convert()?;
/// assert_eq!(*fn_type.return_type(), Type::NUM);
/// assert_matches!(
///     fn_type.args().parts(),
///     ([Type::Tuple(t)], None, [])
///         if t.as_slice().map(Slice::element) == Some(&Type::NUM)
/// );
/// # Ok(())
/// # }
/// ```
#[derive(Debug, Clone, PartialEq)]
pub struct Function<Prim: PrimitiveType = Num> {
    /// Type of function arguments.
    pub(crate) args: Tuple<Prim>,
    /// Type of the value returned by the function.
    pub(crate) return_type: Type<Prim>,
    /// Cache for function params.
    pub(crate) params: Option<Arc<FnParams<Prim>>>,
}

impl<Prim: PrimitiveType> fmt::Display for Function<Prim> {
    fn fmt(&self, formatter: &mut fmt::Formatter<'_>) -> fmt::Result {
        let constraints = self
            .params
            .as_ref()
            .and_then(|params| params.constraints.as_ref());
        if let Some(constraints) = constraints {
            if !constraints.is_empty() {
                write!(formatter, "for<{constraints}> ")?;
            }
        }

        self.args.format_as_tuple(formatter)?;
        write!(formatter, " -> {}", self.return_type)?;
        Ok(())
    }
}

impl<Prim: PrimitiveType> Function<Prim> {
    pub(crate) fn new(args: Tuple<Prim>, return_type: Type<Prim>) -> Self {
        Self {
            args,
            return_type,
            params: None,
        }
    }

    /// Returns a builder for `Function`s.
    pub fn builder() -> FunctionBuilder<Prim> {
        FunctionBuilder::default()
    }

    /// Gets the argument types of this function.
    pub fn args(&self) -> &Tuple<Prim> {
        &self.args
    }

    /// Gets the return type of this function.
    pub fn return_type(&self) -> &Type<Prim> {
        &self.return_type
    }

    pub(crate) fn set_params(&mut self, params: FnParams<Prim>) {
        self.params = Some(Arc::new(params));
    }

    pub(crate) fn is_parametric(&self) -> bool {
        self.params
            .as_ref()
            .map_or(false, |params| !params.is_empty())
    }

    /// Returns `true` iff this type does not contain type / length variables.
    ///
    /// See [`TypeEnvironment`](crate::TypeEnvironment) for caveats of dealing with
    /// non-concrete types.
    pub fn is_concrete(&self) -> bool {
        self.args.is_concrete() && self.return_type.is_concrete()
    }

    /// Marks type params with the specified `indexes` to have `constraints`.
    ///
    /// # Panics
    ///
    /// - Panics if parameters were already computed for the function.
    pub fn with_constraints<C: Constraint<Prim>>(
        self,
        indexes: &[usize],
        constraint: C,
    ) -> FnWithConstraints<Prim> {
        assert!(
            self.params.is_none(),
            "Cannot attach constraints to a function with computed params: `{self}`"
        );

        let constraints = CompleteConstraints::from(ConstraintSet::just(constraint));
        let type_params = indexes
            .iter()
            .map(|&idx| (idx, constraints.clone()))
            .collect();

        FnWithConstraints {
            function: self,
            constraints: ParamConstraints {
                type_params,
                static_lengths: HashSet::new(),
            },
        }
    }

    /// Marks lengths with the specified `indexes` as static.
    ///
    /// # Panics
    ///
    /// - Panics if parameters were already computed for the function.
    pub fn with_static_lengths(self, indexes: &[usize]) -> FnWithConstraints<Prim> {
        assert!(
            self.params.is_none(),
            "Cannot attach constraints to a function with computed params: `{self}`"
        );

        FnWithConstraints {
            function: self,
            constraints: ParamConstraints {
                type_params: HashMap::new(),
                static_lengths: indexes.iter().copied().collect(),
            },
        }
    }
}

/// Function together with constraints on type variables contained either in the function itself
/// or any of the child functions.
///
/// Constructed via [`Function::with_constraints()`].
#[derive(Debug)]
pub struct FnWithConstraints<Prim: PrimitiveType> {
    function: Function<Prim>,
    constraints: ParamConstraints<Prim>,
}

impl<Prim: PrimitiveType> fmt::Display for FnWithConstraints<Prim> {
    fn fmt(&self, formatter: &mut fmt::Formatter<'_>) -> fmt::Result {
        if self.constraints.is_empty() {
            fmt::Display::fmt(&self.function, formatter)
        } else {
            write!(formatter, "for<{}> {}", self.constraints, self.function)
        }
    }
}

impl<Prim: PrimitiveType> FnWithConstraints<Prim> {
    /// Marks type params with the specified `indexes` to have `constraints`. If some constraints
    /// are already present for some of the types, they are overwritten.
    #[must_use]
    pub fn with_constraint<C>(mut self, indexes: &[usize], constraint: &C) -> Self
    where
        C: Constraint<Prim> + Clone,
    {
        for &i in indexes {
            let constraints = self.constraints.type_params.entry(i).or_default();
            constraints.simple.insert(constraint.clone());
        }
        self
    }

    /// Marks lengths with the specified `indexes` as static.
    #[must_use]
    pub fn with_static_lengths(mut self, indexes: &[usize]) -> Self {
        let indexes = indexes.iter().copied();
        self.constraints.static_lengths.extend(indexes);
        self
    }
}

impl<Prim: PrimitiveType> From<FnWithConstraints<Prim>> for Function<Prim> {
    fn from(value: FnWithConstraints<Prim>) -> Self {
        let mut function = value.function;
        ParamQuantifier::fill_params(&mut function, value.constraints);
        function
    }
}

impl<Prim: PrimitiveType> From<FnWithConstraints<Prim>> for Type<Prim> {
    fn from(value: FnWithConstraints<Prim>) -> Self {
        Function::from(value).into()
    }
}

/// Builder for functional types.
///
/// **Tip.** You may also use [`FromStr`](core::str::FromStr) implementation to parse
/// functional types.
///
/// # Examples
///
/// Signature for a function summing a slice of numbers:
///
/// ```
/// # use arithmetic_typing::{Function, UnknownLen, Type, TypeEnvironment};
/// let sum_fn_type = Function::builder()
///     .with_arg(Type::NUM.repeat(UnknownLen::param(0)))
///     .returning(Type::NUM);
/// assert_eq!(sum_fn_type.to_string(), "([Num; N]) -> Num");
/// ```
///
/// Signature for a slice mapping function:
///
/// ```
/// # use arithmetic_typing::{arith::Linearity, Function, UnknownLen, Type};
/// // Definition of the mapping arg.
/// let map_fn_arg = <Function>::builder()
///     .with_arg(Type::param(0))
///     .returning(Type::param(1));
///
/// let map_fn_type = <Function>::builder()
///     .with_arg(Type::param(0).repeat(UnknownLen::param(0)))
///     .with_arg(map_fn_arg)
///     .returning(Type::param(1).repeat(UnknownLen::Dynamic))
///     .with_constraints(&[1], Linearity);
/// assert_eq!(
///     map_fn_type.to_string(),
///     "for<'U: Lin> (['T; N], ('T) -> 'U) -> ['U]"
/// );
/// ```
///
/// Signature of a function with varargs:
///
/// ```
/// # use arithmetic_typing::{Function, UnknownLen, Type};
/// let fn_type = <Function>::builder()
///     .with_varargs(Type::param(0), UnknownLen::param(0))
///     .with_arg(Type::BOOL)
///     .returning(Type::param(0));
/// assert_eq!(fn_type.to_string(), "(...['T; N], Bool) -> 'T");
/// ```
#[derive(Debug, Clone)]
#[must_use]
pub struct FunctionBuilder<Prim: PrimitiveType = Num> {
    args: Tuple<Prim>,
}

impl<Prim: PrimitiveType> Default for FunctionBuilder<Prim> {
    fn default() -> Self {
        Self {
            args: Tuple::empty(),
        }
    }
}

impl<Prim: PrimitiveType> FunctionBuilder<Prim> {
    /// Adds a new argument to the function definition.
    pub fn with_arg(mut self, arg: impl Into<Type<Prim>>) -> Self {
        self.args.push(arg.into());
        self
    }

    /// Adds or sets varargs in the function definition.
    pub fn with_varargs(
        mut self,
        element: impl Into<Type<Prim>>,
        len: impl Into<TupleLen>,
    ) -> Self {
        self.args.set_middle(element.into(), len.into());
        self
    }

    /// Declares the return type of the function and builds it.
    pub fn returning(self, return_type: impl Into<Type<Prim>>) -> Function<Prim> {
        Function::new(self.args, return_type.into())
    }
}

#[cfg(test)]
mod tests {
    use super::*;
    use crate::{arith::Linearity, UnknownLen};

    use core::iter;

    #[test]
    fn constraints_display() {
        let type_constraints = ConstraintSet::<Num>::just(Linearity);
        let type_constraints = CompleteConstraints::from(type_constraints);

        let type_params = (0, type_constraints);
        let constraints = ParamConstraints {
            type_params: iter::once(type_params.clone()).collect(),
            static_lengths: HashSet::new(),
        };
        assert_eq!(constraints.to_string(), "'T: Lin");

        let constraints: ParamConstraints<Num> = ParamConstraints {
            type_params: iter::once(type_params).collect(),
            static_lengths: iter::once(0).collect(),
        };
        assert_eq!(constraints.to_string(), "len! N; 'T: Lin");
    }

    #[test]
    fn fn_with_constraints_display() {
        let sum_fn = <Function>::builder()
            .with_arg(Type::param(0).repeat(UnknownLen::param(0)))
            .returning(Type::param(0))
            .with_constraints(&[0], Linearity);
        assert_eq!(sum_fn.to_string(), "for<'T: Lin> (['T; N]) -> 'T");
    }

    #[test]
    fn fn_builder_with_quantified_arg() {
        let sum_fn: Function = Function::builder()
            .with_arg(Type::NUM.repeat(UnknownLen::param(0)))
            .returning(Type::NUM)
            .with_constraints(&[], Linearity)
            .into();
        assert_eq!(sum_fn.to_string(), "([Num; N]) -> Num");

        let complex_fn: Function = Function::builder()
            .with_arg(Type::NUM)
            .with_arg(sum_fn.clone())
            .returning(Type::NUM)
            .with_constraints(&[], Linearity)
            .into();
        assert_eq!(complex_fn.to_string(), "(Num, ([Num; N]) -> Num) -> Num");

        let other_complex_fn: Function = Function::builder()
            .with_varargs(Type::NUM, UnknownLen::param(0))
            .with_arg(sum_fn)
            .returning(Type::NUM)
            .with_constraints(&[], Linearity)
            .into();
        assert_eq!(
            other_complex_fn.to_string(),
            "(...[Num; N], ([Num; N]) -> Num) -> Num"
        );
    }
}