1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575
//! Base types, such as `Type` and `DynConstraints`.
use core::fmt;
pub(crate) use self::{
fn_type::{FnParams, ParamConstraints},
quantifier::ParamQuantifier,
tuple::IndexError,
};
pub use self::{
fn_type::{FnWithConstraints, Function, FunctionBuilder},
object::Object,
tuple::{LengthVar, Slice, Tuple, TupleIndex, TupleLen, UnknownLen},
};
use crate::{
alloc::{format, vec, Box, Cow},
arith::{CompleteConstraints, ConstraintSet, Num, ObjectSafeConstraint, WithBoolean},
PrimitiveType,
};
mod fn_type;
mod object;
mod quantifier;
mod tuple;
/// Type variable.
///
/// A variable represents a certain unknown type. Variables can be either *free*
/// or *bound* to a [`Function`] (these are known as type params in Rust).
/// Types input to a [`TypeEnvironment`] can only have bounded variables (this is
/// verified in runtime), but types output by the inference process can contain both.
///
/// # Notation
///
/// - Bounded type variables are represented as `'T`, `'U`, `'V`, etc.
/// The tick is inspired by lifetimes in Rust and implicit type params in [F*]. It allows
/// to easily distinguish between vars and primitive types.
/// - Free variables are represented as `_`.
///
/// [`TypeEnvironment`]: crate::TypeEnvironment
/// [F*]: http://www.fstar-lang.org/tutorial/
#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
pub struct TypeVar {
index: usize,
is_free: bool,
}
impl fmt::Display for TypeVar {
fn fmt(&self, formatter: &mut fmt::Formatter<'_>) -> fmt::Result {
if self.is_free {
formatter.write_str("_")
} else {
write!(formatter, "'{}", Self::param_str(self.index))
}
}
}
impl TypeVar {
fn param_str(index: usize) -> Cow<'static, str> {
const PARAM_NAMES: &str = "TUVXYZ";
PARAM_NAMES.get(index..=index).map_or_else(
|| Cow::from(format!("T{}", index - PARAM_NAMES.len())),
Cow::from,
)
}
/// Creates a bounded type variable that can be used to [build functions](FunctionBuilder).
pub const fn param(index: usize) -> Self {
Self {
index,
is_free: false,
}
}
/// Returns the 0-based index of this variable.
pub fn index(self) -> usize {
self.index
}
/// Is this variable free (not bounded in a function declaration)?
pub fn is_free(self) -> bool {
self.is_free
}
}
/// Enumeration encompassing all types supported by the type system.
///
/// Parametric by the [`PrimitiveType`].
///
/// # Notation
///
/// - [`Self::Any`] is represented as `any`.
/// - [`Self::Dyn`] types are represented as documented in [`DynConstraints`].
/// - [`Prim`](Self::Prim)itive types are represented using the [`Display`](fmt::Display)
/// implementation of the corresponding [`PrimitiveType`].
/// - [`Var`](Self::Var)s are represented as documented in [`TypeVar`].
/// - Notation for [functional](Function) and [tuple](Tuple) types is documented separately.
///
/// [`ConstraintSet`]: crate::arith::ConstraintSet
///
/// # Examples
///
/// There are conversions to construct `Type`s eloquently:
///
/// ```
/// # use arithmetic_typing::{Function, UnknownLen, Type};
/// let tuple: Type = (Type::BOOL, Type::NUM).into();
/// assert_eq!(tuple.to_string(), "(Bool, Num)");
/// let slice = tuple.repeat(UnknownLen::param(0));
/// assert_eq!(slice.to_string(), "[(Bool, Num); N]");
/// let fn_type: Type = Function::builder()
/// .with_arg(slice)
/// .returning(Type::NUM)
/// .into();
/// assert_eq!(fn_type.to_string(), "([(Bool, Num); N]) -> Num");
/// ```
///
/// A `Type` can also be parsed from a string:
///
/// ```
/// # use arithmetic_typing::{ast::TypeAst, Type};
/// # use std::convert::TryFrom;
/// # use assert_matches::assert_matches;
/// # fn main() -> anyhow::Result<()> {
/// let slice = <Type>::try_from(&TypeAst::try_from("[(Bool, Num)]")?)?;
/// assert_matches!(slice, Type::Tuple(t) if t.as_slice().is_some());
/// let fn_type = <Type>::try_from(&TypeAst::try_from("([(Bool, Num); N]) -> Num")?)?;
/// assert_matches!(fn_type, Type::Function(_));
/// # Ok(())
/// # }
/// ```
///
/// # `Any` type
///
/// [`Self::Any`], denoted as `any`, is a catch-all type similar to `any` in TypeScript.
/// It allows to circumvent type system limitations at the cost of being extremely imprecise.
/// `any` type can be used in any context (destructured, called with args of any quantity
/// and type and so on), with each application of the type evaluated independently.
/// Thus, the same `any` variable can be treated as a function, a tuple, a primitive type, etc.
///
/// ```
/// # use arithmetic_parser::grammars::{F32Grammar, Parse};
/// # use arithmetic_typing::{Annotated, TypeEnvironment, Type};
/// # use assert_matches::assert_matches;
///
/// # fn main() -> anyhow::Result<()> {
/// let code = "
/// wildcard: any = 1; // `any` can be assigned from anything
/// wildcard == 1 && wildcard == (2, 3);
/// (x, y, ...) = wildcard; // destructuring `any` always succeeds
/// wildcard(1, |x| x + 1); // calling `any` as a function works as well
/// ";
/// let ast = Annotated::<F32Grammar>::parse_statements(code)?;
/// let mut env = TypeEnvironment::new();
/// env.process_statements(&ast)?;
///
/// // Destructure outputs are certain types that can be inferred
/// // from their usage, rather than `any`!
/// assert_matches!(env["x"], Type::Var(_));
/// let bogus_code = "x + 1 == 2; x(1)";
/// let ast = Annotated::<F32Grammar>::parse_statements(bogus_code)?;
/// let errors = env.process_statements(&ast).unwrap_err();
/// # assert_eq!(errors.len(), 1);
/// let err = errors.iter().next().unwrap();
/// assert_eq!(err.main_location().span(bogus_code), "x(1)");
/// # Ok(())
/// # }
/// ```
#[derive(Debug, Clone)]
#[non_exhaustive]
pub enum Type<Prim: PrimitiveType = Num> {
/// Any type aka "I'll think about typing later". Similar to `any` type in TypeScript.
/// See [the dedicated section](#any-type) for more details.
Any,
/// Arbitrary type implementing certain constraints. Similar to `dyn _` types in Rust or use of
/// interfaces in type position in TypeScript.
///
/// See [`DynConstraints`] for details.
Dyn(DynConstraints<Prim>),
/// Primitive type.
Prim(Prim),
/// Functional type.
Function(Box<Function<Prim>>),
/// Tuple type.
Tuple(Tuple<Prim>),
/// Object type.
Object(Object<Prim>),
/// Type variable.
Var(TypeVar),
}
impl<Prim: PrimitiveType> PartialEq for Type<Prim> {
fn eq(&self, other: &Self) -> bool {
match (self, other) {
(Self::Any, _) | (_, Self::Any) => true,
(Self::Dyn(x), Self::Dyn(y)) => x == y,
(Self::Prim(x), Self::Prim(y)) => x == y,
(Self::Var(x), Self::Var(y)) => x == y,
(Self::Tuple(xs), Self::Tuple(ys)) => xs == ys,
(Self::Object(x), Self::Object(y)) => x == y,
(Self::Function(x), Self::Function(y)) => x == y,
_ => false,
}
}
}
impl<Prim: PrimitiveType> fmt::Display for Type<Prim> {
fn fmt(&self, formatter: &mut fmt::Formatter<'_>) -> fmt::Result {
match self {
Self::Any => formatter.write_str("any"),
Self::Dyn(constraints) => {
if constraints.inner.is_empty() {
formatter.write_str("dyn")
} else {
write!(formatter, "dyn {constraints}")
}
}
Self::Var(var) => fmt::Display::fmt(var, formatter),
Self::Prim(num) => fmt::Display::fmt(num, formatter),
Self::Function(fn_type) => fmt::Display::fmt(fn_type, formatter),
Self::Tuple(tuple) => fmt::Display::fmt(tuple, formatter),
Self::Object(obj) => fmt::Display::fmt(obj, formatter),
}
}
}
impl<Prim: PrimitiveType> From<Function<Prim>> for Type<Prim> {
fn from(fn_type: Function<Prim>) -> Self {
Self::Function(Box::new(fn_type))
}
}
impl<Prim: PrimitiveType> From<Tuple<Prim>> for Type<Prim> {
fn from(tuple: Tuple<Prim>) -> Self {
Self::Tuple(tuple)
}
}
impl<Prim: PrimitiveType> From<Slice<Prim>> for Type<Prim> {
fn from(slice: Slice<Prim>) -> Self {
Self::Tuple(slice.into())
}
}
impl<Prim: PrimitiveType> From<Object<Prim>> for Type<Prim> {
fn from(object: Object<Prim>) -> Self {
Self::Object(object)
}
}
impl<Prim: PrimitiveType> From<DynConstraints<Prim>> for Type<Prim> {
fn from(constraints: DynConstraints<Prim>) -> Self {
Self::Dyn(constraints)
}
}
macro_rules! impl_from_tuple_for_type {
($($var:tt : $ty:ident),*) => {
impl<Prim, $($ty : Into<Type<Prim>>,)*> From<($($ty,)*)> for Type<Prim>
where
Prim: PrimitiveType,
{
#[allow(unused_variables)] // `tuple` is unused for empty tuple
fn from(tuple: ($($ty,)*)) -> Self {
Self::Tuple(Tuple::from(vec![$(tuple.$var.into(),)*]))
}
}
};
}
impl_from_tuple_for_type!();
impl_from_tuple_for_type!(0: T);
impl_from_tuple_for_type!(0: T, 1: U);
impl_from_tuple_for_type!(0: T, 1: U, 2: V);
impl_from_tuple_for_type!(0: T, 1: U, 2: V, 3: W);
impl_from_tuple_for_type!(0: T, 1: U, 2: V, 3: W, 4: X);
impl_from_tuple_for_type!(0: T, 1: U, 2: V, 3: W, 4: X, 5: Y);
impl_from_tuple_for_type!(0: T, 1: U, 2: V, 3: W, 4: X, 5: Y, 6: Z);
impl_from_tuple_for_type!(0: T, 1: U, 2: V, 3: W, 4: X, 5: Y, 6: Z, 7: A);
impl_from_tuple_for_type!(0: T, 1: U, 2: V, 3: W, 4: X, 5: Y, 6: Z, 7: A, 8: B);
impl_from_tuple_for_type!(0: T, 1: U, 2: V, 3: W, 4: X, 5: Y, 6: Z, 7: A, 8: B, 9: C);
impl Type {
/// Numeric primitive type.
pub const NUM: Self = Type::Prim(Num::Num);
}
impl<Prim: WithBoolean> Type<Prim> {
/// Boolean primitive type.
pub const BOOL: Self = Type::Prim(Prim::BOOL);
}
impl<Prim: PrimitiveType> Type<Prim> {
/// Returns a void type (an empty tuple).
pub fn void() -> Self {
Self::Tuple(Tuple::empty())
}
/// Creates a bounded type variable with the specified `index`.
pub fn param(index: usize) -> Self {
Self::Var(TypeVar::param(index))
}
pub(crate) fn free_var(index: usize) -> Self {
Self::Var(TypeVar {
index,
is_free: true,
})
}
/// Creates a slice type.
pub fn slice(element: impl Into<Type<Prim>>, length: impl Into<TupleLen>) -> Self {
Self::Tuple(Slice::new(element.into(), length).into())
}
/// Creates a slice type by repeating this type.
pub fn repeat(self, length: impl Into<TupleLen>) -> Slice<Prim> {
Slice::new(self, length)
}
/// Checks if this type is void (i.e., an empty tuple).
pub fn is_void(&self) -> bool {
matches!(self, Self::Tuple(tuple) if tuple.is_empty())
}
/// Returns `Some(true)` if this type is known to be primitive,
/// `Some(false)` if it's known not to be primitive, and `None` if either case is possible.
pub(crate) fn is_primitive(&self) -> Option<bool> {
match self {
Self::Prim(_) => Some(true),
Self::Tuple(_) | Self::Object(_) | Self::Function(_) => Some(false),
_ => None,
}
}
/// Returns `true` iff this type does not contain type / length variables.
///
/// See [`TypeEnvironment`](crate::TypeEnvironment) for caveats of dealing with
/// non-concrete types.
pub fn is_concrete(&self) -> bool {
match self {
Self::Var(var) => !var.is_free,
Self::Any | Self::Prim(_) => true,
Self::Dyn(constraints) => constraints.is_concrete(),
Self::Function(fn_type) => fn_type.is_concrete(),
Self::Tuple(tuple) => tuple.is_concrete(),
Self::Object(obj) => obj.is_concrete(),
}
}
}
/// Arbitrary type implementing certain constraints. Similar to `dyn _` types in Rust or use of
/// interfaces in type position in TypeScript.
///
/// [`Constraint`]s in this type must be [object-safe](crate::arith::ObjectSafeConstraint).
/// `DynConstraints` can also specify an [`Object`] constraint, which can be converted to it
/// using the [`From`] trait.
///
/// [`Constraint`]: crate::arith::Constraint
///
/// # Notation
///
/// - If the constraints do not include an object constraint, they are [`Display`](fmt::Display)ed
/// like a [`ConstraintSet`] with `dyn` prefix; e.g, `dyn Lin + Hash`.
/// - If the constraints include an object constraint, it is specified before all other constraints,
/// but after the `dyn` prefix; e.g., `dyn { x: Num } + Lin`.
///
/// # Examples
///
/// `dyn _` types can be used to express that any types satisfying certain constraints
/// should be accepted.
///
/// ```
/// # use arithmetic_parser::grammars::{F32Grammar, Parse};
/// # use arithmetic_typing::{defs::Prelude, Annotated, TypeEnvironment, Type, Function};
/// #
/// # fn main() -> anyhow::Result<()> {
/// let code = "
/// sum_lengths = |...pts: dyn { x: _, y: _ }| {
/// pts.fold(0, |acc, { x, y }| acc + sqrt(x * x + y * y))
/// };
/// sum_lengths(#{ x: 1, y: 2 }, #{ x: 3, y: 4, z: 5 })
/// ";
/// let ast = Annotated::<F32Grammar>::parse_statements(code)?;
///
/// let mut env = TypeEnvironment::new();
/// let sqrt = Function::builder().with_arg(Type::NUM).returning(Type::NUM);
/// env.insert("fold", Prelude::Fold).insert("sqrt", sqrt);
/// env.process_statements(&ast)?;
///
/// assert_eq!(
/// env["sum_lengths"].to_string(),
/// "(...[dyn { x: Num, y: Num }; N]) -> Num"
/// );
/// # Ok(())
/// # }
/// ```
///
/// One of primary use cases of `dyn _` is restricting varargs of a function:
///
/// ```
/// # use arithmetic_parser::grammars::{F32Grammar, Parse};
/// # use arithmetic_typing::{
/// # ast::TypeAst, defs::Prelude, error::ErrorKind, Annotated, TypeEnvironment, Type,
/// # };
/// # use std::convert::TryFrom;
/// # use assert_matches::assert_matches;
/// #
/// # fn main() -> anyhow::Result<()> {
/// // Function that accepts any amount of linear args (not necessarily
/// // of the same type) and returns a number.
/// let digest_fn = Type::try_from(&TypeAst::try_from("(...[dyn Lin; N]) -> Num")?)?;
/// let mut env = TypeEnvironment::new();
/// env.insert("true", Prelude::True).insert("digest", digest_fn);
///
/// let code = "
/// digest(1, 2, (3, 4), #{ x: 5, y: (6,) }) == 1;
/// digest(3, true) == 0; // fails: `true` is not linear
/// ";
/// let ast = Annotated::<F32Grammar>::parse_statements(code)?;
/// let errors = env.process_statements(&ast).unwrap_err();
///
/// let err = errors.iter().next().unwrap();
/// assert_eq!(err.main_location().span(code), "true");
/// assert_matches!(err.kind(), ErrorKind::FailedConstraint { .. });
/// # Ok(())
/// # }
/// ```
#[derive(Clone, PartialEq)]
pub struct DynConstraints<Prim: PrimitiveType> {
pub(crate) inner: CompleteConstraints<Prim>,
}
impl<Prim: PrimitiveType> fmt::Debug for DynConstraints<Prim> {
fn fmt(&self, formatter: &mut fmt::Formatter<'_>) -> fmt::Result {
fmt::Debug::fmt(&self.inner, formatter)
}
}
impl<Prim: PrimitiveType> fmt::Display for DynConstraints<Prim> {
fn fmt(&self, formatter: &mut fmt::Formatter<'_>) -> fmt::Result {
fmt::Display::fmt(&self.inner, formatter)
}
}
impl<Prim: PrimitiveType> From<Object<Prim>> for DynConstraints<Prim> {
fn from(object: Object<Prim>) -> Self {
Self {
inner: object.into(),
}
}
}
impl<Prim: PrimitiveType> DynConstraints<Prim> {
/// Creates constraints based on a single constraint.
pub fn just(constraint: impl ObjectSafeConstraint<Prim>) -> Self {
Self {
inner: CompleteConstraints::from(ConstraintSet::just(constraint)),
}
}
/// Checks if this constraint set is empty.
pub fn is_empty(&self) -> bool {
self.inner.is_empty()
}
/// Returns the enclosed object constraint, if any.
pub fn object(&self) -> Option<&Object<Prim>> {
self.inner.object.as_ref()
}
fn is_concrete(&self) -> bool {
self.inner.object.as_ref().map_or(true, Object::is_concrete)
}
/// Adds the specified `constraint` to these constraints.
pub fn insert(&mut self, constraint: impl ObjectSafeConstraint<Prim>) {
self.inner.simple.insert(constraint);
}
}
#[cfg(test)]
mod tests {
use super::*;
use crate::{alloc::Vec, ast::TypeAst};
#[test]
fn types_are_equal_to_self() -> anyhow::Result<()> {
const SAMPLE_TYPES: &[&str] = &[
"Num",
"(Num, Bool)",
"(Num, ...[Bool; N]) -> ()",
"(Num) -> Num",
"for<'T: Lin> (['T; N]) -> 'T",
];
for &sample_type in SAMPLE_TYPES {
let ty = <Type>::try_from(&TypeAst::try_from(sample_type)?)?;
assert!(ty.eq(&ty), "Type is not equal to self: {ty}");
}
Ok(())
}
#[test]
fn equality_is_preserved_on_renaming_params() {
const EQUAL_FNS: &[&str] = &[
"for<'T: Lin> (['T; N]) -> 'T",
"for<'T: Lin> (['T; L]) -> 'T",
"for<'Ty: Lin> (['Ty; N]) -> 'Ty",
"for<'N: Lin> (['N; T]) -> 'N",
];
let functions: Vec<Type> = EQUAL_FNS
.iter()
.map(|&s| Type::try_from(&TypeAst::try_from(s).unwrap()).unwrap())
.collect();
for (i, function) in functions.iter().enumerate() {
for other_function in &functions[(i + 1)..] {
assert_eq!(function, other_function);
}
}
}
#[test]
fn unequal_functions() {
const FUNCTIONS: &[&str] = &[
"for<'T: Lin> (['T; N]) -> 'T",
"for<len! N; 'T: Lin> (['T; N]) -> 'T",
"(['T; N]) -> 'T",
"for<'T: Lin> (['T; N], 'T) -> 'T",
"for<'T: Lin> (['T; N]) -> ('T)",
];
let functions: Vec<Type> = FUNCTIONS
.iter()
.map(|&s| Type::try_from(&TypeAst::try_from(s).unwrap()).unwrap())
.collect();
for (i, function) in functions.iter().enumerate() {
for other_function in &functions[(i + 1)..] {
assert_ne!(function, other_function);
}
}
}
#[test]
fn concrete_types() {
let sample_types = &[
Type::NUM,
Type::BOOL,
Type::Any,
(Type::BOOL, Type::NUM).into(),
Type::try_from(&TypeAst::try_from("for<'T: Lin> (['T; N]) -> 'T").unwrap()).unwrap(),
];
for ty in sample_types {
assert!(ty.is_concrete(), "{ty:?}");
}
}
#[test]
fn non_concrete_types() {
let sample_types = &[
Type::free_var(2),
(Type::NUM, Type::free_var(0)).into(),
Function::builder()
.with_arg(Type::free_var(0))
.returning(Type::void())
.into(),
];
for ty in sample_types {
assert!(!ty.is_concrete(), "{ty:?}");
}
}
}