1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
//! Tuple types.

use std::{borrow::Cow, cmp, fmt, iter, ops};

use crate::{arith::Num, PrimitiveType, Type};

/// Length variable.
///
/// A variable represents a certain unknown length. Variables can be either *free*
/// or *bound* to a [`Function`](crate::Function) (similar to const params in Rust, except lengths
/// always have the `usize` type).
/// Just as with [`TypeVar`](crate::TypeVar)s, types input to a [`TypeEnvironment`]
/// can only have bounded length variables (this is
/// verified in runtime), but types output by the inference process can contain both.
///
/// # Notation
///
/// - Bounded length variables are represented as `N`, `M`, `L`, etc.
/// - Free variables are represented as `_`.
///
/// [`TypeEnvironment`]: crate::TypeEnvironment
#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
pub struct LengthVar {
    index: usize,
    is_free: bool,
}

impl fmt::Display for LengthVar {
    fn fmt(&self, formatter: &mut fmt::Formatter<'_>) -> fmt::Result {
        if self.is_free {
            formatter.write_str("_")
        } else {
            formatter.write_str(Self::param_str(self.index).as_ref())
        }
    }
}

impl LengthVar {
    pub(crate) fn param_str(index: usize) -> Cow<'static, str> {
        const PARAM_NAMES: &str = "NMLKJI";
        PARAM_NAMES.get(index..=index).map_or_else(
            || Cow::from(format!("N{}", index - PARAM_NAMES.len())),
            Cow::from,
        )
    }

    /// Creates a bounded length variable that can be used to
    /// [build functions](crate::FunctionBuilder).
    pub const fn param(index: usize) -> Self {
        Self {
            index,
            is_free: false,
        }
    }

    /// Returns the 0-based index of this variable.
    pub fn index(self) -> usize {
        self.index
    }

    /// Is this variable free (not bounded in a function declaration)?
    pub fn is_free(self) -> bool {
        self.is_free
    }
}

/// Unknown / variable length, e.g., of a tuple.
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
#[non_exhaustive]
pub enum UnknownLen {
    /// Length that can vary at runtime, similar to lengths of slices in Rust.
    Dynamic,
    /// Length variable.
    Var(LengthVar),
}

impl fmt::Display for UnknownLen {
    fn fmt(&self, formatter: &mut fmt::Formatter<'_>) -> fmt::Result {
        match self {
            Self::Dynamic => formatter.write_str("*"),
            Self::Var(var) => fmt::Display::fmt(var, formatter),
        }
    }
}

impl ops::Add<usize> for UnknownLen {
    type Output = TupleLen;

    fn add(self, rhs: usize) -> Self::Output {
        TupleLen {
            var: Some(self),
            exact: rhs,
        }
    }
}

impl UnknownLen {
    /// Creates a bounded type variable that can be used to [build functions](crate::FunctionBuilder).
    pub const fn param(index: usize) -> Self {
        Self::Var(LengthVar::param(index))
    }

    pub(crate) const fn free_var(index: usize) -> Self {
        Self::Var(LengthVar {
            index,
            is_free: true,
        })
    }
}

/// Generic tuple length.
///
/// A tuple length consists of the two components: an unknown / variable length,
/// such as [`UnknownLen::Var`], and a non-negative increment.
/// These components can be obtained via [`Self::components()`].
///
/// # Static lengths
///
/// Tuple lengths can be either *static* or *dynamic*. Dynamic lengths are lengths
/// that contain [`UnknownLen::Dynamic`].
///
/// Functions, [`TypeArithmetic`]s, etc. can specify constraints on lengths being static.
/// For example, this is a part of [`Ops`];
/// dynamically sized slices such as `[Num]` cannot be added / multiplied / etc.,
/// even if they are of the same type. This constraint is denoted as `len! N, M, ...`
/// in the function quantifier, e.g., `for<len! N> (['T; N]) -> 'T`.
///
/// If the constraint fails, an error will be raised with the [kind](crate::error::Error::kind)
/// set to [`ErrorKind::DynamicLen`].
///
/// [`TypeArithmetic`]: crate::arith::TypeArithmetic
/// [`Ops`]: crate::arith::Ops
/// [`ErrorKind::DynamicLen`]: crate::error::ErrorKind::DynamicLen
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
pub struct TupleLen {
    var: Option<UnknownLen>,
    exact: usize,
}

impl fmt::Display for TupleLen {
    fn fmt(&self, formatter: &mut fmt::Formatter<'_>) -> fmt::Result {
        match (&self.var, self.exact) {
            (Some(var), 0) => fmt::Display::fmt(var, formatter),
            (Some(var), exact) => write!(formatter, "{var} + {exact}"),
            (None, exact) => fmt::Display::fmt(&exact, formatter),
        }
    }
}

impl ops::Add<usize> for TupleLen {
    type Output = Self;

    fn add(self, rhs: usize) -> Self::Output {
        Self {
            var: self.var,
            exact: self.exact + rhs,
        }
    }
}

impl From<UnknownLen> for TupleLen {
    fn from(var: UnknownLen) -> Self {
        Self {
            var: Some(var),
            exact: 0,
        }
    }
}

impl From<usize> for TupleLen {
    fn from(exact: usize) -> Self {
        Self { var: None, exact }
    }
}

impl TupleLen {
    /// Zero length.
    pub(crate) const ZERO: Self = Self {
        var: None,
        exact: 0,
    };

    fn is_concrete(&self) -> bool {
        !matches!(&self.var, Some(UnknownLen::Var(var)) if var.is_free())
    }

    /// Returns components of this length.
    pub fn components(&self) -> (Option<UnknownLen>, usize) {
        (self.var, self.exact)
    }

    /// Returns mutable references to the components of this length.
    pub fn components_mut(&mut self) -> (Option<&mut UnknownLen>, &mut usize) {
        (self.var.as_mut(), &mut self.exact)
    }
}

/// Index of an element within a tuple.
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
#[non_exhaustive]
pub enum TupleIndex {
    /// 0-based index from the start of the tuple.
    Start(usize),
    /// Middle element.
    Middle,
    /// 0-based index from the end of the tuple.
    End(usize),
}

/// Tuple type.
///
/// Most generally, a tuple type consists of three fragments: *start*,
/// *middle* and *end*. Types at the start and at the end are heterogeneous,
/// while the middle always contains items of the same type (but the number
/// of these items can generally vary). A [`Slice`] is a partial case of a tuple type;
/// i.e., a type with the empty start and end. Likewise, a Rust-like tuple is a tuple
/// that only has a start.
///
/// # Notation
///
/// A tuple type is denoted like `(T, U, ...[V; _], X, Y)`, where `T` and `U` are types
/// at the start, `V` is the middle type, and `X`, `Y` are types at the end.
/// The number of middle elements can be parametric, such as `N`.
/// If a tuple only has a start, this notation collapses into Rust-like `(T, U)`.
/// If a tuple only has a middle part ([`Self::as_slice()`] returns `Some(_)`),
/// it is denoted as the corresponding slice, something like `[T; N]`.
///
/// # Indexing
///
/// *Indexing* is accessing tuple elements via an expression like `xs.0`.
/// Tuple indexing is supported via [`FieldAccess`](arithmetic_parser::Expr::FieldAccess) expr,
/// where the field name is a decimal `usize` number.
///
/// The indexing support for type inference is quite limited.
/// For it to work, the receiver type must be known to be a tuple, and the index must be such
/// that the type of the corresponding element is decidable. Otherwise,
/// an [`UnsupportedIndex`] error will be raised.
///
/// | Tuple type | Index | Outcome |
/// |------------|-------|---------|
/// | `(Num, Bool)` | 0 | `Num` |
/// | `(Num, Bool)` | 1 | `Bool` |
/// | `(Num, Bool)` | 2 | Hard error; the index is out of bounds. |
/// | `Num` | 0 | Hard error; only tuples can be indexed. |
/// | `[Num; _]` | 0 | Error; the slice may be empty. |
/// | `[Num; _ + 1]` | 0 | `Num`; the slice is guaranteed to have 0th element. |
/// | `(Bool, ...[Num; _])` | 0 | `Bool` |
/// | `(Bool, ...[Num; _])` | 1 | Error; the slice part may be empty. |
/// | `(...[Num; _], Bool)` | 0 | Error; cannot decide if the result is `Num` or `Bool`. |
///
/// [`UnsupportedIndex`]: crate::error::ErrorKind::UnsupportedIndex
///
/// # Examples
///
/// Simple tuples can be created using the [`From`] trait. Complex tuples can be created
/// via [`Self::new()`].
///
/// ```
/// # use arithmetic_typing::{Slice, Tuple, UnknownLen, Type};
/// # use assert_matches::assert_matches;
/// let simple_tuple = Tuple::from(vec![Type::NUM, Type::BOOL]);
/// assert_matches!(simple_tuple.parts(), ([_, _], None, []));
/// assert!(simple_tuple.as_slice().is_none());
/// assert_eq!(simple_tuple.to_string(), "(Num, Bool)");
///
/// let slice_tuple = Tuple::from(
///    Type::NUM.repeat(UnknownLen::param(0)),
/// );
/// assert_matches!(slice_tuple.parts(), ([], Some(_), []));
/// assert!(slice_tuple.as_slice().is_some());
/// assert_eq!(slice_tuple.to_string(), "[Num; N]");
///
/// let complex_tuple = Tuple::new(
///     vec![Type::NUM],
///     Type::NUM.repeat(UnknownLen::param(0)),
///     vec![Type::BOOL, Type::param(0)],
/// );
/// assert_matches!(complex_tuple.parts(), ([_], Some(_), [_, _]));
/// assert_eq!(complex_tuple.to_string(), "(Num, ...[Num; N], Bool, 'T)");
/// ```
#[derive(Debug, Clone)]
pub struct Tuple<Prim: PrimitiveType = Num> {
    start: Vec<Type<Prim>>,
    middle: Option<Slice<Prim>>,
    end: Vec<Type<Prim>>,
}

impl<Prim: PrimitiveType> PartialEq for Tuple<Prim> {
    fn eq(&self, other: &Self) -> bool {
        let this_len = self.len();
        if this_len != other.len() {
            false
        } else if let (None, len) = this_len.components() {
            self.iter(len).zip(other.iter(len)).all(|(x, y)| x == y)
        } else {
            self.equal_elements_dyn(other).all(|(x, y)| x == y)
        }
    }
}

impl<Prim: PrimitiveType> fmt::Display for Tuple<Prim> {
    fn fmt(&self, formatter: &mut fmt::Formatter<'_>) -> fmt::Result {
        if let Some(slice) = self.as_slice() {
            if let (Some(_), _) = slice.length.components() {
                return fmt::Display::fmt(slice, formatter);
            }
        }
        self.format_as_tuple(formatter)
    }
}

impl<Prim: PrimitiveType> Tuple<Prim> {
    pub(crate) fn from_parts(
        start: Vec<Type<Prim>>,
        middle: Option<Slice<Prim>>,
        end: Vec<Type<Prim>>,
    ) -> Self {
        Self { start, middle, end }
    }

    /// Creates a new complex tuple.
    pub fn new(start: Vec<Type<Prim>>, middle: Slice<Prim>, end: Vec<Type<Prim>>) -> Self {
        Self::from_parts(start, Some(middle), end)
    }

    pub(crate) fn empty() -> Self {
        Self {
            start: Vec::new(),
            middle: None,
            end: Vec::new(),
        }
    }

    pub(crate) fn is_concrete(&self) -> bool {
        self.start.iter().chain(&self.end).all(Type::is_concrete)
            && self.middle.as_ref().map_or(true, Slice::is_concrete)
    }

    /// Returns this tuple as slice if it fits (has no start or end components).
    pub fn as_slice(&self) -> Option<&Slice<Prim>> {
        self.middle
            .as_ref()
            .filter(|_| self.start.is_empty() && self.end.is_empty())
    }

    pub(crate) fn format_as_tuple(&self, formatter: &mut fmt::Formatter<'_>) -> fmt::Result {
        formatter.write_str("(")?;

        for (i, element) in self.start.iter().enumerate() {
            fmt::Display::fmt(element, formatter)?;
            if i + 1 < self.start.len() || self.middle.is_some() {
                formatter.write_str(", ")?;
            }
        }

        if let Some(middle) = &self.middle {
            if let (None, len) = middle.length.components() {
                // Write the slice inline, not separating it into square brackets.
                for i in 0..len {
                    fmt::Display::fmt(&middle.element, formatter)?;
                    if i + 1 < len {
                        formatter.write_str(", ")?;
                    }
                }
            } else {
                formatter.write_str("...")?;
                fmt::Display::fmt(middle, formatter)?;
            }
        }
        if !self.end.is_empty() {
            formatter.write_str(", ")?;
        }

        for (i, element) in self.end.iter().enumerate() {
            fmt::Display::fmt(element, formatter)?;
            if i + 1 < self.end.len() {
                formatter.write_str(", ")?;
            }
        }

        formatter.write_str(")")
    }

    fn resolved_middle_len(&self) -> TupleLen {
        self.middle
            .as_ref()
            .map_or(TupleLen::ZERO, |middle| middle.length)
    }

    /// Returns shared references to the parts comprising this tuple: start, middle, and end.
    #[allow(clippy::type_complexity)]
    pub fn parts(&self) -> (&[Type<Prim>], Option<&Slice<Prim>>, &[Type<Prim>]) {
        (&self.start, self.middle.as_ref(), &self.end)
    }

    /// Returns exclusive references to the parts comprising this tuple: start, middle, and end.
    #[allow(clippy::type_complexity)]
    pub fn parts_mut(
        &mut self,
    ) -> (
        &mut [Type<Prim>],
        Option<&mut Slice<Prim>>,
        &mut [Type<Prim>],
    ) {
        (&mut self.start, self.middle.as_mut(), &mut self.end)
    }

    /// Returns the length of this tuple.
    ///
    /// # Examples
    ///
    /// ```
    /// # use arithmetic_typing::{Slice, Tuple, Type, UnknownLen, TupleLen};
    /// let tuple = Tuple::from(vec![Type::NUM, Type::BOOL]);
    /// assert_eq!(tuple.len(), TupleLen::from(2));
    ///
    /// let slice = Slice::new(Type::NUM, UnknownLen::param(0));
    /// let tuple = Tuple::from(slice.clone());
    /// assert_eq!(tuple.len(), TupleLen::from(UnknownLen::param(0)));
    ///
    /// let tuple = Tuple::new(vec![], slice, vec![Type::BOOL]);
    /// assert_eq!(tuple.len(), UnknownLen::param(0) + 1);
    /// ```
    pub fn len(&self) -> TupleLen {
        let increment = self.start.len() + self.end.len();
        self.resolved_middle_len() + increment
    }

    /// Returns `true` iff this tuple is guaranteed to be empty.
    pub fn is_empty(&self) -> bool {
        self.start.is_empty() && self.end.is_empty() && self.resolved_middle_len() == TupleLen::ZERO
    }

    pub(crate) fn push(&mut self, element: Type<Prim>) {
        if self.middle.is_some() {
            self.end.push(element);
        } else {
            self.start.push(element);
        }
    }

    pub(crate) fn set_middle(&mut self, element: Type<Prim>, len: TupleLen) {
        self.middle = Some(Slice::new(element, len));
    }

    /// Returns iterator over elements of this tuple assuming it has the given total length.
    pub(crate) fn iter(&self, total_len: usize) -> impl Iterator<Item = &Type<Prim>> + '_ {
        let middle_len = total_len - self.start.len() - self.end.len();
        let middle_element = self.middle.as_ref().map(Slice::element);

        self.start
            .iter()
            .chain(iter::repeat_with(move || middle_element.unwrap()).take(middle_len))
            .chain(&self.end)
    }

    /// Attempts to index into this tuple. `middle_len` specifies the resolved middle length.
    pub(crate) fn get_element(
        &self,
        index: usize,
        middle_len: TupleLen,
    ) -> Result<&Type<Prim>, IndexError> {
        if let Some(element) = self.start.get(index) {
            Ok(element)
        } else {
            self.middle
                .as_ref()
                .map_or(Err(IndexError::OutOfBounds), |middle| {
                    let middle_index = index - self.start.len();
                    if middle_index < middle_len.exact {
                        // The element is definitely in the middle.
                        Ok(middle.element.as_ref())
                    } else if middle_len.var.is_none() {
                        // The element is definitely in the end.
                        let end_index = middle_index - middle_len.exact;
                        self.end.get(end_index).ok_or(IndexError::OutOfBounds)
                    } else {
                        Err(IndexError::NoInfo)
                    }
                })
        }
    }

    /// Returns pairs of elements of this and `other` tuple that should be equal to each other.
    ///
    /// This method is specialized for the case when the length of middles is unknown.
    pub(crate) fn equal_elements_dyn<'a>(
        &'a self,
        other: &'a Self,
    ) -> impl Iterator<Item = (&'a Type<Prim>, &'a Type<Prim>)> + 'a {
        let middle_elem = self.middle.as_ref().unwrap().element.as_ref();
        let other_middle_elem = other.middle.as_ref().unwrap().element.as_ref();
        let iter = iter::once((middle_elem, other_middle_elem));

        let borders_iter = self
            .start
            .iter()
            .zip(&other.start)
            .chain(self.end.iter().rev().zip(other.end.iter().rev()));
        let iter = iter.chain(borders_iter);

        let skip_at_start = cmp::min(self.start.len(), other.start.len());
        let skip_at_end = cmp::min(self.end.len(), other.end.len());
        let middle = self
            .start
            .iter()
            .skip(skip_at_start)
            .chain(self.end.iter().rev().skip(skip_at_end));
        let iter = iter.chain(middle.map(move |elem| (middle_elem, elem)));

        let other_middle = other
            .start
            .iter()
            .skip(skip_at_start)
            .chain(other.end.iter().rev().skip(skip_at_end));
        iter.chain(other_middle.map(move |elem| (middle_elem, elem)))
    }

    /// Iterates over all distinct elements in this tuple. The iteration is performed in order.
    ///
    /// # Examples
    ///
    /// ```
    /// # use arithmetic_typing::{Slice, Tuple, TupleIndex, UnknownLen, Type};
    /// let complex_tuple = Tuple::new(
    ///     vec![Type::NUM],
    ///     Slice::new(Type::NUM, UnknownLen::param(0)),
    ///     vec![Type::BOOL, Type::param(0)],
    /// );
    /// let elements: Vec<_> = complex_tuple.element_types().collect();
    /// assert_eq!(elements, [
    ///     (TupleIndex::Start(0), &Type::NUM),
    ///     (TupleIndex::Middle, &Type::NUM),
    ///     (TupleIndex::End(0), &Type::BOOL),
    ///     (TupleIndex::End(1), &Type::param(0)),
    /// ]);
    /// ```
    pub fn element_types(&self) -> impl Iterator<Item = (TupleIndex, &Type<Prim>)> + '_ {
        let middle_element = self
            .middle
            .as_ref()
            .map(|slice| (TupleIndex::Middle, slice.element.as_ref()));
        let start = self
            .start
            .iter()
            .enumerate()
            .map(|(i, elem)| (TupleIndex::Start(i), elem));
        let end = self
            .end
            .iter()
            .enumerate()
            .map(|(i, elem)| (TupleIndex::End(i), elem));
        start.chain(middle_element).chain(end)
    }

    pub(crate) fn element_types_mut(&mut self) -> impl Iterator<Item = &mut Type<Prim>> + '_ {
        let middle_element = self.middle.as_mut().map(|slice| slice.element.as_mut());
        self.start
            .iter_mut()
            .chain(middle_element)
            .chain(&mut self.end)
    }
}

impl<Prim: PrimitiveType> From<Vec<Type<Prim>>> for Tuple<Prim> {
    fn from(elements: Vec<Type<Prim>>) -> Self {
        Self {
            start: elements,
            middle: None,
            end: Vec::new(),
        }
    }
}

/// Errors that can occur when indexing into a tuple.
#[derive(Debug)]
pub(crate) enum IndexError {
    /// Index is out of bounds.
    OutOfBounds,
    /// Not enough info to determine the type.
    NoInfo,
}

/// Slice type. Unlike in Rust, slices are a subset of tuples. If `length` is
/// exact (has no [`UnknownLen`] part), the slice is completely equivalent
/// to the corresponding tuple.
///
/// # Notation
///
/// A slice is denoted as `[T; N]` where `T` is the slice [element](Self::element())
/// and `N` is the slice [length](Self::len()). A special case is `[T]`, a slice
/// with a dynamic length.
///
/// # Examples
///
/// ```
/// use arithmetic_parser::grammars::{F32Grammar, Parse};
/// use arithmetic_typing::{Annotated, TupleLen, TypeEnvironment, Type};
///
/// # fn main() -> anyhow::Result<()> {
/// type Parser = Annotated<F32Grammar>;
/// let ast = Parser::parse_statements("xs: [Num; _] = (1, 2, 3);")?;
/// let mut env = TypeEnvironment::new();
/// env.process_statements(&ast)?;
/// // Slices with fixed length are equivalent to tuples.
/// assert_eq!(env["xs"].to_string(), "(Num, Num, Num)");
///
/// let code = "
///     xs: [Num] = (1, 2, 3);
///     ys = xs + 1; // works fine: despite `xs` having unknown length,
///                  // it's always possible to add a number to it
///     (_, _, z) = xs; // does not work: the tuple length is erased
/// ";
/// let ast = Parser::parse_statements(code)?;
/// let errors = env.process_statements(&ast).unwrap_err();
///
/// let err = errors.iter().next().unwrap();
/// assert_eq!(err.main_location().span(code), "(_, _, z)");
/// assert_eq!(env["ys"], env["xs"]);
/// # Ok(())
/// # }
/// ```
#[derive(Debug, Clone, PartialEq)]
pub struct Slice<Prim: PrimitiveType = Num> {
    element: Box<Type<Prim>>,
    length: TupleLen,
}

impl<Prim: PrimitiveType> fmt::Display for Slice<Prim> {
    fn fmt(&self, formatter: &mut fmt::Formatter<'_>) -> fmt::Result {
        if self.length == TupleLen::from(UnknownLen::Dynamic) {
            write!(formatter, "[{}]", self.element)
        } else {
            write!(formatter, "[{}; {}]", self.element, self.length)
        }
    }
}

impl<Prim: PrimitiveType> Slice<Prim> {
    /// Creates a new slice.
    pub fn new(element: Type<Prim>, length: impl Into<TupleLen>) -> Self {
        Self {
            element: Box::new(element),
            length: length.into(),
        }
    }

    /// Returns the element type of this slice.
    pub fn element(&self) -> &Type<Prim> {
        self.element.as_ref()
    }

    /// Returns the length of this slice.
    pub fn len(&self) -> TupleLen {
        self.length
    }

    pub(crate) fn len_mut(&mut self) -> &mut TupleLen {
        &mut self.length
    }

    /// Returns `true` iff this slice is definitely empty.
    pub fn is_empty(&self) -> bool {
        self.length == TupleLen::ZERO
    }

    fn is_concrete(&self) -> bool {
        self.length.is_concrete() && self.element.is_concrete()
    }
}

impl<Prim: PrimitiveType> From<Slice<Prim>> for Tuple<Prim> {
    fn from(slice: Slice<Prim>) -> Self {
        Self {
            start: Vec::new(),
            middle: Some(slice),
            end: Vec::new(),
        }
    }
}

#[cfg(test)]
mod tests {
    use super::*;

    use assert_matches::assert_matches;

    #[test]
    fn tuple_length_display() {
        let len = TupleLen::from(3);
        assert_eq!(len.to_string(), "3");
        let len = UnknownLen::param(0) + 2;
        assert_eq!(len.to_string(), "N + 2");
    }

    #[test]
    fn slice_display() {
        let slice = Slice::new(Type::NUM, UnknownLen::param(0));
        assert_eq!(slice.to_string(), "[Num; N]");
        let slice = Slice::new(Type::NUM, UnknownLen::free_var(0));
        assert_eq!(slice.to_string(), "[Num; _]");
        let slice = Slice::new(Type::NUM, TupleLen::from(3));
        assert_eq!(slice.to_string(), "[Num; 3]");
    }

    #[test]
    fn tuple_display() {
        // Simple tuples.
        let tuple = Tuple::from(vec![Type::NUM, Type::BOOL]);
        assert_eq!(tuple.to_string(), "(Num, Bool)");
        let tuple = Tuple::from(Slice::new(Type::NUM, UnknownLen::param(0)));
        assert_eq!(tuple.to_string(), "[Num; N]");
        let tuple = Tuple::from(Slice::new(Type::NUM, TupleLen::from(3)));
        assert_eq!(tuple.to_string(), "(Num, Num, Num)");

        let tuple = Tuple {
            start: vec![Type::NUM, Type::BOOL],
            middle: Some(Slice::new(Type::NUM, UnknownLen::param(0))),
            end: vec![],
        };
        assert_eq!(tuple.to_string(), "(Num, Bool, ...[Num; N])");

        let tuple = Tuple {
            start: vec![Type::NUM, Type::BOOL],
            middle: Some(Slice::new(Type::NUM, TupleLen::from(2))),
            end: vec![],
        };
        assert_eq!(tuple.to_string(), "(Num, Bool, Num, Num)");

        let tuple = Tuple {
            start: vec![Type::NUM, Type::BOOL],
            middle: Some(Slice::new(Type::NUM, UnknownLen::param(0))),
            end: vec![Type::param(0)],
        };
        assert_eq!(tuple.to_string(), "(Num, Bool, ...[Num; N], 'T)");
    }

    #[test]
    fn equal_elements_static_two_simple_tuples() {
        let tuple = Tuple::from(vec![Type::NUM, Type::BOOL, Type::free_var(0)]);
        let other_tuple = <Tuple>::from(vec![Type::free_var(1), Type::BOOL, Type::free_var(0)]);
        let equal_elements: Vec<_> = tuple.iter(3).zip(other_tuple.iter(3)).collect();

        assert_eq!(
            equal_elements,
            vec![
                (&Type::NUM, &Type::free_var(1)),
                (&Type::BOOL, &Type::BOOL),
                (&Type::free_var(0), &Type::free_var(0)),
            ]
        );
    }

    #[test]
    fn equal_elements_static_simple_tuple_and_slice() {
        let tuple = Tuple::from(vec![Type::NUM, Type::BOOL, Type::free_var(0)]);
        let slice = <Tuple>::from(Slice::new(Type::free_var(1), UnknownLen::free_var(0)));
        let equal_elements: Vec<_> = tuple.iter(3).zip(slice.iter(3)).collect();

        assert_eq!(
            equal_elements,
            vec![
                (&Type::NUM, &Type::free_var(1)),
                (&Type::BOOL, &Type::free_var(1)),
                (&Type::free_var(0), &Type::free_var(1)),
            ]
        );
    }

    #[test]
    fn equal_elements_static_slice_and_complex_tuple() {
        let slice = <Tuple>::from(Slice::new(Type::free_var(1), UnknownLen::free_var(0)));
        let tuple = Tuple {
            start: vec![Type::NUM],
            middle: Some(Slice::new(Type::free_var(0), UnknownLen::free_var(1))),
            end: vec![Type::BOOL, Type::free_var(2)],
        };

        let mut expected_pairs = vec![
            (Type::free_var(1), Type::NUM),
            (Type::free_var(1), Type::BOOL),
            (Type::free_var(1), Type::free_var(2)),
        ];
        let equal_elements: Vec<_> = slice
            .iter(3)
            .zip(tuple.iter(3))
            .map(|(x, y)| (x.clone(), y.clone()))
            .collect();
        assert_eq!(equal_elements, expected_pairs);

        let equal_elements: Vec<_> = slice
            .iter(4)
            .zip(tuple.iter(4))
            .map(|(x, y)| (x.clone(), y.clone()))
            .collect();
        expected_pairs.insert(1, (Type::free_var(1), Type::free_var(0)));
        assert_eq!(equal_elements, expected_pairs);

        let equal_elements: Vec<_> = slice
            .iter(5)
            .zip(tuple.iter(5))
            .map(|(x, y)| (x.clone(), y.clone()))
            .collect();
        expected_pairs.insert(2, (Type::free_var(1), Type::free_var(0)));
        assert_eq!(equal_elements, expected_pairs);
    }

    fn create_test_tuples() -> (Tuple, Tuple) {
        let tuple = Tuple {
            start: vec![Type::NUM],
            middle: Some(Slice::new(Type::free_var(0), UnknownLen::free_var(1))),
            end: vec![Type::BOOL, Type::free_var(2)],
        };
        let other_tuple = Tuple {
            start: vec![Type::NUM, Type::free_var(3)],
            middle: Some(Slice::new(Type::BOOL, UnknownLen::free_var(1))),
            end: vec![Type::free_var(1)],
        };
        (tuple, other_tuple)
    }

    #[test]
    fn equal_elements_static_two_complex_tuples() {
        let (tuple, other_tuple) = create_test_tuples();

        let equal_elements: Vec<_> = tuple.iter(3).zip(other_tuple.iter(3)).collect();
        assert_eq!(
            equal_elements,
            vec![
                (&Type::NUM, &Type::NUM),
                (&Type::BOOL, &Type::free_var(3)),
                (&Type::free_var(2), &Type::free_var(1)),
            ]
        );

        let equal_elements: Vec<_> = tuple.iter(4).zip(other_tuple.iter(4)).collect();
        assert_eq!(
            equal_elements,
            vec![
                (&Type::NUM, &Type::NUM),
                (&Type::free_var(0), &Type::free_var(3)),
                (&Type::BOOL, &Type::BOOL),
                (&Type::free_var(2), &Type::free_var(1)),
            ]
        );
    }

    #[test]
    fn equal_elements_dyn_two_slices() {
        let slice = Tuple::from(Slice::new(Type::free_var(0), UnknownLen::free_var(0)));
        let other_slice = Tuple::from(Slice::new(Type::NUM, UnknownLen::free_var(1)));
        let equal_elements: Vec<_> = slice.equal_elements_dyn(&other_slice).collect();

        assert_eq!(equal_elements, vec![(&Type::free_var(0), &Type::NUM)]);
    }

    #[test]
    fn equal_elements_dyn_two_complex_tuples() {
        let (tuple, other_tuple) = create_test_tuples();
        let equal_elements: Vec<_> = tuple.equal_elements_dyn(&other_tuple).collect();

        assert_eq!(
            equal_elements,
            vec![
                // Middle elements
                (&Type::free_var(0), &Type::BOOL),
                // Borders
                (&Type::NUM, &Type::NUM),
                (&Type::free_var(2), &Type::free_var(1)),
                // Non-borders in first tuple.
                (&Type::free_var(0), &Type::BOOL),
                // Non-borders in second tuple.
                (&Type::free_var(0), &Type::free_var(3)),
            ]
        );
    }

    #[test]
    fn tuple_indexing() {
        // Ordinary tuple.
        let tuple = Tuple::from(vec![Type::NUM, Type::BOOL]);
        assert_eq!(*tuple.get_element(0, TupleLen::ZERO).unwrap(), Type::NUM,);
        assert_eq!(*tuple.get_element(1, TupleLen::ZERO).unwrap(), Type::BOOL,);
        assert_matches!(
            tuple.get_element(2, TupleLen::ZERO).unwrap_err(),
            IndexError::OutOfBounds
        );

        // Slice.
        let tuple = Tuple::from(Slice::new(Type::NUM, UnknownLen::param(0)));
        assert_eq!(*tuple.get_element(0, TupleLen::from(3)).unwrap(), Type::NUM);
        assert_matches!(
            tuple.get_element(3, TupleLen::from(3)).unwrap_err(),
            IndexError::OutOfBounds
        );
        assert_matches!(
            tuple
                .get_element(0, UnknownLen::free_var(0).into())
                .unwrap_err(),
            IndexError::NoInfo
        );
        assert_eq!(
            *tuple.get_element(0, UnknownLen::free_var(0) + 1).unwrap(),
            Type::NUM
        );

        // Tuple with all three components.
        let (tuple, _) = create_test_tuples();
        assert_eq!(
            *tuple
                .get_element(0, UnknownLen::free_var(0).into())
                .unwrap(),
            Type::NUM
        );
        assert_matches!(
            tuple
                .get_element(1, UnknownLen::free_var(0).into())
                .unwrap_err(),
            IndexError::NoInfo
        );

        assert_eq!(*tuple.get_element(1, 2.into()).unwrap(), Type::free_var(0));
        assert_eq!(*tuple.get_element(3, 2.into()).unwrap(), Type::BOOL);
        assert_matches!(
            tuple.get_element(5, 2.into()).unwrap_err(),
            IndexError::OutOfBounds
        );
    }
}