1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934
//! Tuple types.
use core::{cmp, fmt, iter, ops};
use crate::{
alloc::{format, Box, Cow, Vec},
arith::Num,
PrimitiveType, Type,
};
/// Length variable.
///
/// A variable represents a certain unknown length. Variables can be either *free*
/// or *bound* to a [`Function`](crate::Function) (similar to const params in Rust, except lengths
/// always have the `usize` type).
/// Just as with [`TypeVar`](crate::TypeVar)s, types input to a [`TypeEnvironment`]
/// can only have bounded length variables (this is
/// verified in runtime), but types output by the inference process can contain both.
///
/// # Notation
///
/// - Bounded length variables are represented as `N`, `M`, `L`, etc.
/// - Free variables are represented as `_`.
///
/// [`TypeEnvironment`]: crate::TypeEnvironment
#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
pub struct LengthVar {
index: usize,
is_free: bool,
}
impl fmt::Display for LengthVar {
fn fmt(&self, formatter: &mut fmt::Formatter<'_>) -> fmt::Result {
if self.is_free {
formatter.write_str("_")
} else {
formatter.write_str(Self::param_str(self.index).as_ref())
}
}
}
impl LengthVar {
pub(crate) fn param_str(index: usize) -> Cow<'static, str> {
const PARAM_NAMES: &str = "NMLKJI";
PARAM_NAMES.get(index..=index).map_or_else(
|| Cow::from(format!("N{}", index - PARAM_NAMES.len())),
Cow::from,
)
}
/// Creates a bounded length variable that can be used to
/// [build functions](crate::FunctionBuilder).
pub const fn param(index: usize) -> Self {
Self {
index,
is_free: false,
}
}
/// Returns the 0-based index of this variable.
pub fn index(self) -> usize {
self.index
}
/// Is this variable free (not bounded in a function declaration)?
pub fn is_free(self) -> bool {
self.is_free
}
}
/// Unknown / variable length, e.g., of a tuple.
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
#[non_exhaustive]
pub enum UnknownLen {
/// Length that can vary at runtime, similar to lengths of slices in Rust.
Dynamic,
/// Length variable.
Var(LengthVar),
}
impl fmt::Display for UnknownLen {
fn fmt(&self, formatter: &mut fmt::Formatter<'_>) -> fmt::Result {
match self {
Self::Dynamic => formatter.write_str("*"),
Self::Var(var) => fmt::Display::fmt(var, formatter),
}
}
}
impl ops::Add<usize> for UnknownLen {
type Output = TupleLen;
fn add(self, rhs: usize) -> Self::Output {
TupleLen {
var: Some(self),
exact: rhs,
}
}
}
impl UnknownLen {
/// Creates a bounded type variable that can be used to [build functions](crate::FunctionBuilder).
pub const fn param(index: usize) -> Self {
Self::Var(LengthVar::param(index))
}
pub(crate) const fn free_var(index: usize) -> Self {
Self::Var(LengthVar {
index,
is_free: true,
})
}
}
/// Generic tuple length.
///
/// A tuple length consists of the two components: an unknown / variable length,
/// such as [`UnknownLen::Var`], and a non-negative increment.
/// These components can be obtained via [`Self::components()`].
///
/// # Static lengths
///
/// Tuple lengths can be either *static* or *dynamic*. Dynamic lengths are lengths
/// that contain [`UnknownLen::Dynamic`].
///
/// Functions, [`TypeArithmetic`]s, etc. can specify constraints on lengths being static.
/// For example, this is a part of [`Ops`];
/// dynamically sized slices such as `[Num]` cannot be added / multiplied / etc.,
/// even if they are of the same type. This constraint is denoted as `len! N, M, ...`
/// in the function quantifier, e.g., `for<len! N> (['T; N]) -> 'T`.
///
/// If the constraint fails, an error will be raised with the [kind](crate::error::Error::kind)
/// set to [`ErrorKind::DynamicLen`].
///
/// [`TypeArithmetic`]: crate::arith::TypeArithmetic
/// [`Ops`]: crate::arith::Ops
/// [`ErrorKind::DynamicLen`]: crate::error::ErrorKind::DynamicLen
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
pub struct TupleLen {
var: Option<UnknownLen>,
exact: usize,
}
impl fmt::Display for TupleLen {
fn fmt(&self, formatter: &mut fmt::Formatter<'_>) -> fmt::Result {
match (&self.var, self.exact) {
(Some(var), 0) => fmt::Display::fmt(var, formatter),
(Some(var), exact) => write!(formatter, "{var} + {exact}"),
(None, exact) => fmt::Display::fmt(&exact, formatter),
}
}
}
impl ops::Add<usize> for TupleLen {
type Output = Self;
fn add(self, rhs: usize) -> Self::Output {
Self {
var: self.var,
exact: self.exact + rhs,
}
}
}
impl From<UnknownLen> for TupleLen {
fn from(var: UnknownLen) -> Self {
Self {
var: Some(var),
exact: 0,
}
}
}
impl From<usize> for TupleLen {
fn from(exact: usize) -> Self {
Self { var: None, exact }
}
}
impl TupleLen {
/// Zero length.
pub(crate) const ZERO: Self = Self {
var: None,
exact: 0,
};
fn is_concrete(&self) -> bool {
!matches!(&self.var, Some(UnknownLen::Var(var)) if var.is_free())
}
/// Returns components of this length.
pub fn components(&self) -> (Option<UnknownLen>, usize) {
(self.var, self.exact)
}
/// Returns mutable references to the components of this length.
pub fn components_mut(&mut self) -> (Option<&mut UnknownLen>, &mut usize) {
(self.var.as_mut(), &mut self.exact)
}
}
/// Index of an element within a tuple.
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
#[non_exhaustive]
pub enum TupleIndex {
/// 0-based index from the start of the tuple.
Start(usize),
/// Middle element.
Middle,
/// 0-based index from the end of the tuple.
End(usize),
}
/// Tuple type.
///
/// Most generally, a tuple type consists of three fragments: *start*,
/// *middle* and *end*. Types at the start and at the end are heterogeneous,
/// while the middle always contains items of the same type (but the number
/// of these items can generally vary). A [`Slice`] is a partial case of a tuple type;
/// i.e., a type with the empty start and end. Likewise, a Rust-like tuple is a tuple
/// that only has a start.
///
/// # Notation
///
/// A tuple type is denoted like `(T, U, ...[V; _], X, Y)`, where `T` and `U` are types
/// at the start, `V` is the middle type, and `X`, `Y` are types at the end.
/// The number of middle elements can be parametric, such as `N`.
/// If a tuple only has a start, this notation collapses into Rust-like `(T, U)`.
/// If a tuple only has a middle part ([`Self::as_slice()`] returns `Some(_)`),
/// it is denoted as the corresponding slice, something like `[T; N]`.
///
/// # Indexing
///
/// *Indexing* is accessing tuple elements via an expression like `xs.0`.
/// Tuple indexing is supported via [`FieldAccess`](arithmetic_parser::Expr::FieldAccess) expr,
/// where the field name is a decimal `usize` number.
///
/// The indexing support for type inference is quite limited.
/// For it to work, the receiver type must be known to be a tuple, and the index must be such
/// that the type of the corresponding element is decidable. Otherwise,
/// an [`UnsupportedIndex`] error will be raised.
///
/// | Tuple type | Index | Outcome |
/// |------------|-------|---------|
/// | `(Num, Bool)` | 0 | `Num` |
/// | `(Num, Bool)` | 1 | `Bool` |
/// | `(Num, Bool)` | 2 | Hard error; the index is out of bounds. |
/// | `Num` | 0 | Hard error; only tuples can be indexed. |
/// | `[Num; _]` | 0 | Error; the slice may be empty. |
/// | `[Num; _ + 1]` | 0 | `Num`; the slice is guaranteed to have 0th element. |
/// | `(Bool, ...[Num; _])` | 0 | `Bool` |
/// | `(Bool, ...[Num; _])` | 1 | Error; the slice part may be empty. |
/// | `(...[Num; _], Bool)` | 0 | Error; cannot decide if the result is `Num` or `Bool`. |
///
/// [`UnsupportedIndex`]: crate::error::ErrorKind::UnsupportedIndex
///
/// # Examples
///
/// Simple tuples can be created using the [`From`] trait. Complex tuples can be created
/// via [`Self::new()`].
///
/// ```
/// # use arithmetic_typing::{Slice, Tuple, UnknownLen, Type};
/// # use assert_matches::assert_matches;
/// let simple_tuple = Tuple::from(vec![Type::NUM, Type::BOOL]);
/// assert_matches!(simple_tuple.parts(), ([_, _], None, []));
/// assert!(simple_tuple.as_slice().is_none());
/// assert_eq!(simple_tuple.to_string(), "(Num, Bool)");
///
/// let slice_tuple = Tuple::from(
/// Type::NUM.repeat(UnknownLen::param(0)),
/// );
/// assert_matches!(slice_tuple.parts(), ([], Some(_), []));
/// assert!(slice_tuple.as_slice().is_some());
/// assert_eq!(slice_tuple.to_string(), "[Num; N]");
///
/// let complex_tuple = Tuple::new(
/// vec![Type::NUM],
/// Type::NUM.repeat(UnknownLen::param(0)),
/// vec![Type::BOOL, Type::param(0)],
/// );
/// assert_matches!(complex_tuple.parts(), ([_], Some(_), [_, _]));
/// assert_eq!(complex_tuple.to_string(), "(Num, ...[Num; N], Bool, 'T)");
/// ```
#[derive(Debug, Clone)]
pub struct Tuple<Prim: PrimitiveType = Num> {
start: Vec<Type<Prim>>,
middle: Option<Slice<Prim>>,
end: Vec<Type<Prim>>,
}
impl<Prim: PrimitiveType> PartialEq for Tuple<Prim> {
fn eq(&self, other: &Self) -> bool {
let this_len = self.len();
if this_len != other.len() {
false
} else if let (None, len) = this_len.components() {
self.iter(len).zip(other.iter(len)).all(|(x, y)| x == y)
} else {
self.equal_elements_dyn(other).all(|(x, y)| x == y)
}
}
}
impl<Prim: PrimitiveType> fmt::Display for Tuple<Prim> {
fn fmt(&self, formatter: &mut fmt::Formatter<'_>) -> fmt::Result {
if let Some(slice) = self.as_slice() {
if let (Some(_), _) = slice.length.components() {
return fmt::Display::fmt(slice, formatter);
}
}
self.format_as_tuple(formatter)
}
}
impl<Prim: PrimitiveType> Tuple<Prim> {
pub(crate) fn from_parts(
start: Vec<Type<Prim>>,
middle: Option<Slice<Prim>>,
end: Vec<Type<Prim>>,
) -> Self {
Self { start, middle, end }
}
/// Creates a new complex tuple.
pub fn new(start: Vec<Type<Prim>>, middle: Slice<Prim>, end: Vec<Type<Prim>>) -> Self {
Self::from_parts(start, Some(middle), end)
}
pub(crate) fn empty() -> Self {
Self {
start: Vec::new(),
middle: None,
end: Vec::new(),
}
}
pub(crate) fn is_concrete(&self) -> bool {
self.start.iter().chain(&self.end).all(Type::is_concrete)
&& self.middle.as_ref().map_or(true, Slice::is_concrete)
}
/// Returns this tuple as slice if it fits (has no start or end components).
pub fn as_slice(&self) -> Option<&Slice<Prim>> {
self.middle
.as_ref()
.filter(|_| self.start.is_empty() && self.end.is_empty())
}
pub(crate) fn format_as_tuple(&self, formatter: &mut fmt::Formatter<'_>) -> fmt::Result {
formatter.write_str("(")?;
for (i, element) in self.start.iter().enumerate() {
fmt::Display::fmt(element, formatter)?;
if i + 1 < self.start.len() || self.middle.is_some() {
formatter.write_str(", ")?;
}
}
if let Some(middle) = &self.middle {
if let (None, len) = middle.length.components() {
// Write the slice inline, not separating it into square brackets.
for i in 0..len {
fmt::Display::fmt(&middle.element, formatter)?;
if i + 1 < len {
formatter.write_str(", ")?;
}
}
} else {
formatter.write_str("...")?;
fmt::Display::fmt(middle, formatter)?;
}
}
if !self.end.is_empty() {
formatter.write_str(", ")?;
}
for (i, element) in self.end.iter().enumerate() {
fmt::Display::fmt(element, formatter)?;
if i + 1 < self.end.len() {
formatter.write_str(", ")?;
}
}
formatter.write_str(")")
}
fn resolved_middle_len(&self) -> TupleLen {
self.middle
.as_ref()
.map_or(TupleLen::ZERO, |middle| middle.length)
}
/// Returns shared references to the parts comprising this tuple: start, middle, and end.
#[allow(clippy::type_complexity)]
pub fn parts(&self) -> (&[Type<Prim>], Option<&Slice<Prim>>, &[Type<Prim>]) {
(&self.start, self.middle.as_ref(), &self.end)
}
/// Returns exclusive references to the parts comprising this tuple: start, middle, and end.
#[allow(clippy::type_complexity)]
pub fn parts_mut(
&mut self,
) -> (
&mut [Type<Prim>],
Option<&mut Slice<Prim>>,
&mut [Type<Prim>],
) {
(&mut self.start, self.middle.as_mut(), &mut self.end)
}
/// Returns the length of this tuple.
///
/// # Examples
///
/// ```
/// # use arithmetic_typing::{Slice, Tuple, Type, UnknownLen, TupleLen};
/// let tuple = Tuple::from(vec![Type::NUM, Type::BOOL]);
/// assert_eq!(tuple.len(), TupleLen::from(2));
///
/// let slice = Slice::new(Type::NUM, UnknownLen::param(0));
/// let tuple = Tuple::from(slice.clone());
/// assert_eq!(tuple.len(), TupleLen::from(UnknownLen::param(0)));
///
/// let tuple = Tuple::new(vec![], slice, vec![Type::BOOL]);
/// assert_eq!(tuple.len(), UnknownLen::param(0) + 1);
/// ```
pub fn len(&self) -> TupleLen {
let increment = self.start.len() + self.end.len();
self.resolved_middle_len() + increment
}
/// Returns `true` iff this tuple is guaranteed to be empty.
pub fn is_empty(&self) -> bool {
self.start.is_empty() && self.end.is_empty() && self.resolved_middle_len() == TupleLen::ZERO
}
pub(crate) fn push(&mut self, element: Type<Prim>) {
if self.middle.is_some() {
self.end.push(element);
} else {
self.start.push(element);
}
}
pub(crate) fn set_middle(&mut self, element: Type<Prim>, len: TupleLen) {
self.middle = Some(Slice::new(element, len));
}
/// Returns iterator over elements of this tuple assuming it has the given total length.
pub(crate) fn iter(&self, total_len: usize) -> impl Iterator<Item = &Type<Prim>> + '_ {
let middle_len = total_len - self.start.len() - self.end.len();
let middle_element = self.middle.as_ref().map(Slice::element);
self.start
.iter()
.chain(iter::repeat_with(move || middle_element.unwrap()).take(middle_len))
.chain(&self.end)
}
/// Attempts to index into this tuple. `middle_len` specifies the resolved middle length.
pub(crate) fn get_element(
&self,
index: usize,
middle_len: TupleLen,
) -> Result<&Type<Prim>, IndexError> {
if let Some(element) = self.start.get(index) {
Ok(element)
} else {
self.middle
.as_ref()
.map_or(Err(IndexError::OutOfBounds), |middle| {
let middle_index = index - self.start.len();
if middle_index < middle_len.exact {
// The element is definitely in the middle.
Ok(middle.element.as_ref())
} else if middle_len.var.is_none() {
// The element is definitely in the end.
let end_index = middle_index - middle_len.exact;
self.end.get(end_index).ok_or(IndexError::OutOfBounds)
} else {
Err(IndexError::NoInfo)
}
})
}
}
/// Returns pairs of elements of this and `other` tuple that should be equal to each other.
///
/// This method is specialized for the case when the length of middles is unknown.
pub(crate) fn equal_elements_dyn<'a>(
&'a self,
other: &'a Self,
) -> impl Iterator<Item = (&'a Type<Prim>, &'a Type<Prim>)> + 'a {
let middle_elem = self.middle.as_ref().unwrap().element.as_ref();
let other_middle_elem = other.middle.as_ref().unwrap().element.as_ref();
let iter = iter::once((middle_elem, other_middle_elem));
let borders_iter = self
.start
.iter()
.zip(&other.start)
.chain(self.end.iter().rev().zip(other.end.iter().rev()));
let iter = iter.chain(borders_iter);
let skip_at_start = cmp::min(self.start.len(), other.start.len());
let skip_at_end = cmp::min(self.end.len(), other.end.len());
let middle = self
.start
.iter()
.skip(skip_at_start)
.chain(self.end.iter().rev().skip(skip_at_end));
let iter = iter.chain(middle.map(move |elem| (middle_elem, elem)));
let other_middle = other
.start
.iter()
.skip(skip_at_start)
.chain(other.end.iter().rev().skip(skip_at_end));
iter.chain(other_middle.map(move |elem| (middle_elem, elem)))
}
/// Iterates over all distinct elements in this tuple. The iteration is performed in order.
///
/// # Examples
///
/// ```
/// # use arithmetic_typing::{Slice, Tuple, TupleIndex, UnknownLen, Type};
/// let complex_tuple = Tuple::new(
/// vec![Type::NUM],
/// Slice::new(Type::NUM, UnknownLen::param(0)),
/// vec![Type::BOOL, Type::param(0)],
/// );
/// let elements: Vec<_> = complex_tuple.element_types().collect();
/// assert_eq!(elements, [
/// (TupleIndex::Start(0), &Type::NUM),
/// (TupleIndex::Middle, &Type::NUM),
/// (TupleIndex::End(0), &Type::BOOL),
/// (TupleIndex::End(1), &Type::param(0)),
/// ]);
/// ```
pub fn element_types(&self) -> impl Iterator<Item = (TupleIndex, &Type<Prim>)> + '_ {
let middle_element = self
.middle
.as_ref()
.map(|slice| (TupleIndex::Middle, slice.element.as_ref()));
let start = self
.start
.iter()
.enumerate()
.map(|(i, elem)| (TupleIndex::Start(i), elem));
let end = self
.end
.iter()
.enumerate()
.map(|(i, elem)| (TupleIndex::End(i), elem));
start.chain(middle_element).chain(end)
}
pub(crate) fn element_types_mut(&mut self) -> impl Iterator<Item = &mut Type<Prim>> + '_ {
let middle_element = self.middle.as_mut().map(|slice| slice.element.as_mut());
self.start
.iter_mut()
.chain(middle_element)
.chain(&mut self.end)
}
}
impl<Prim: PrimitiveType> From<Vec<Type<Prim>>> for Tuple<Prim> {
fn from(elements: Vec<Type<Prim>>) -> Self {
Self {
start: elements,
middle: None,
end: Vec::new(),
}
}
}
/// Errors that can occur when indexing into a tuple.
#[derive(Debug)]
pub(crate) enum IndexError {
/// Index is out of bounds.
OutOfBounds,
/// Not enough info to determine the type.
NoInfo,
}
/// Slice type. Unlike in Rust, slices are a subset of tuples. If `length` is
/// exact (has no [`UnknownLen`] part), the slice is completely equivalent
/// to the corresponding tuple.
///
/// # Notation
///
/// A slice is denoted as `[T; N]` where `T` is the slice [element](Self::element())
/// and `N` is the slice [length](Self::len()). A special case is `[T]`, a slice
/// with a dynamic length.
///
/// # Examples
///
/// ```
/// use arithmetic_parser::grammars::{F32Grammar, Parse};
/// use arithmetic_typing::{Annotated, TupleLen, TypeEnvironment, Type};
///
/// # fn main() -> anyhow::Result<()> {
/// type Parser = Annotated<F32Grammar>;
/// let ast = Parser::parse_statements("xs: [Num; _] = (1, 2, 3);")?;
/// let mut env = TypeEnvironment::new();
/// env.process_statements(&ast)?;
/// // Slices with fixed length are equivalent to tuples.
/// assert_eq!(env["xs"].to_string(), "(Num, Num, Num)");
///
/// let code = "
/// xs: [Num] = (1, 2, 3);
/// ys = xs + 1; // works fine: despite `xs` having unknown length,
/// // it's always possible to add a number to it
/// (_, _, z) = xs; // does not work: the tuple length is erased
/// ";
/// let ast = Parser::parse_statements(code)?;
/// let errors = env.process_statements(&ast).unwrap_err();
///
/// let err = errors.iter().next().unwrap();
/// assert_eq!(err.main_location().span(code), "(_, _, z)");
/// assert_eq!(env["ys"], env["xs"]);
/// # Ok(())
/// # }
/// ```
#[derive(Debug, Clone, PartialEq)]
pub struct Slice<Prim: PrimitiveType = Num> {
element: Box<Type<Prim>>,
length: TupleLen,
}
impl<Prim: PrimitiveType> fmt::Display for Slice<Prim> {
fn fmt(&self, formatter: &mut fmt::Formatter<'_>) -> fmt::Result {
if self.length == TupleLen::from(UnknownLen::Dynamic) {
write!(formatter, "[{}]", self.element)
} else {
write!(formatter, "[{}; {}]", self.element, self.length)
}
}
}
impl<Prim: PrimitiveType> Slice<Prim> {
/// Creates a new slice.
pub fn new(element: Type<Prim>, length: impl Into<TupleLen>) -> Self {
Self {
element: Box::new(element),
length: length.into(),
}
}
/// Returns the element type of this slice.
pub fn element(&self) -> &Type<Prim> {
self.element.as_ref()
}
/// Returns the length of this slice.
pub fn len(&self) -> TupleLen {
self.length
}
pub(crate) fn len_mut(&mut self) -> &mut TupleLen {
&mut self.length
}
/// Returns `true` iff this slice is definitely empty.
pub fn is_empty(&self) -> bool {
self.length == TupleLen::ZERO
}
fn is_concrete(&self) -> bool {
self.length.is_concrete() && self.element.is_concrete()
}
}
impl<Prim: PrimitiveType> From<Slice<Prim>> for Tuple<Prim> {
fn from(slice: Slice<Prim>) -> Self {
Self {
start: Vec::new(),
middle: Some(slice),
end: Vec::new(),
}
}
}
#[cfg(test)]
mod tests {
use assert_matches::assert_matches;
use super::*;
use crate::alloc::{vec, ToString};
#[test]
fn tuple_length_display() {
let len = TupleLen::from(3);
assert_eq!(len.to_string(), "3");
let len = UnknownLen::param(0) + 2;
assert_eq!(len.to_string(), "N + 2");
}
#[test]
fn slice_display() {
let slice = Slice::new(Type::NUM, UnknownLen::param(0));
assert_eq!(slice.to_string(), "[Num; N]");
let slice = Slice::new(Type::NUM, UnknownLen::free_var(0));
assert_eq!(slice.to_string(), "[Num; _]");
let slice = Slice::new(Type::NUM, TupleLen::from(3));
assert_eq!(slice.to_string(), "[Num; 3]");
}
#[test]
fn tuple_display() {
// Simple tuples.
let tuple = Tuple::from(vec![Type::NUM, Type::BOOL]);
assert_eq!(tuple.to_string(), "(Num, Bool)");
let tuple = Tuple::from(Slice::new(Type::NUM, UnknownLen::param(0)));
assert_eq!(tuple.to_string(), "[Num; N]");
let tuple = Tuple::from(Slice::new(Type::NUM, TupleLen::from(3)));
assert_eq!(tuple.to_string(), "(Num, Num, Num)");
let tuple = Tuple {
start: vec![Type::NUM, Type::BOOL],
middle: Some(Slice::new(Type::NUM, UnknownLen::param(0))),
end: vec![],
};
assert_eq!(tuple.to_string(), "(Num, Bool, ...[Num; N])");
let tuple = Tuple {
start: vec![Type::NUM, Type::BOOL],
middle: Some(Slice::new(Type::NUM, TupleLen::from(2))),
end: vec![],
};
assert_eq!(tuple.to_string(), "(Num, Bool, Num, Num)");
let tuple = Tuple {
start: vec![Type::NUM, Type::BOOL],
middle: Some(Slice::new(Type::NUM, UnknownLen::param(0))),
end: vec![Type::param(0)],
};
assert_eq!(tuple.to_string(), "(Num, Bool, ...[Num; N], 'T)");
}
#[test]
fn equal_elements_static_two_simple_tuples() {
let tuple = Tuple::from(vec![Type::NUM, Type::BOOL, Type::free_var(0)]);
let other_tuple = <Tuple>::from(vec![Type::free_var(1), Type::BOOL, Type::free_var(0)]);
let equal_elements: Vec<_> = tuple.iter(3).zip(other_tuple.iter(3)).collect();
assert_eq!(
equal_elements,
vec![
(&Type::NUM, &Type::free_var(1)),
(&Type::BOOL, &Type::BOOL),
(&Type::free_var(0), &Type::free_var(0)),
]
);
}
#[test]
fn equal_elements_static_simple_tuple_and_slice() {
let tuple = Tuple::from(vec![Type::NUM, Type::BOOL, Type::free_var(0)]);
let slice = <Tuple>::from(Slice::new(Type::free_var(1), UnknownLen::free_var(0)));
let equal_elements: Vec<_> = tuple.iter(3).zip(slice.iter(3)).collect();
assert_eq!(
equal_elements,
vec![
(&Type::NUM, &Type::free_var(1)),
(&Type::BOOL, &Type::free_var(1)),
(&Type::free_var(0), &Type::free_var(1)),
]
);
}
#[test]
fn equal_elements_static_slice_and_complex_tuple() {
let slice = <Tuple>::from(Slice::new(Type::free_var(1), UnknownLen::free_var(0)));
let tuple = Tuple {
start: vec![Type::NUM],
middle: Some(Slice::new(Type::free_var(0), UnknownLen::free_var(1))),
end: vec![Type::BOOL, Type::free_var(2)],
};
let mut expected_pairs = vec![
(Type::free_var(1), Type::NUM),
(Type::free_var(1), Type::BOOL),
(Type::free_var(1), Type::free_var(2)),
];
let equal_elements: Vec<_> = slice
.iter(3)
.zip(tuple.iter(3))
.map(|(x, y)| (x.clone(), y.clone()))
.collect();
assert_eq!(equal_elements, expected_pairs);
let equal_elements: Vec<_> = slice
.iter(4)
.zip(tuple.iter(4))
.map(|(x, y)| (x.clone(), y.clone()))
.collect();
expected_pairs.insert(1, (Type::free_var(1), Type::free_var(0)));
assert_eq!(equal_elements, expected_pairs);
let equal_elements: Vec<_> = slice
.iter(5)
.zip(tuple.iter(5))
.map(|(x, y)| (x.clone(), y.clone()))
.collect();
expected_pairs.insert(2, (Type::free_var(1), Type::free_var(0)));
assert_eq!(equal_elements, expected_pairs);
}
fn create_test_tuples() -> (Tuple, Tuple) {
let tuple = Tuple {
start: vec![Type::NUM],
middle: Some(Slice::new(Type::free_var(0), UnknownLen::free_var(1))),
end: vec![Type::BOOL, Type::free_var(2)],
};
let other_tuple = Tuple {
start: vec![Type::NUM, Type::free_var(3)],
middle: Some(Slice::new(Type::BOOL, UnknownLen::free_var(1))),
end: vec![Type::free_var(1)],
};
(tuple, other_tuple)
}
#[test]
fn equal_elements_static_two_complex_tuples() {
let (tuple, other_tuple) = create_test_tuples();
let equal_elements: Vec<_> = tuple.iter(3).zip(other_tuple.iter(3)).collect();
assert_eq!(
equal_elements,
vec![
(&Type::NUM, &Type::NUM),
(&Type::BOOL, &Type::free_var(3)),
(&Type::free_var(2), &Type::free_var(1)),
]
);
let equal_elements: Vec<_> = tuple.iter(4).zip(other_tuple.iter(4)).collect();
assert_eq!(
equal_elements,
vec![
(&Type::NUM, &Type::NUM),
(&Type::free_var(0), &Type::free_var(3)),
(&Type::BOOL, &Type::BOOL),
(&Type::free_var(2), &Type::free_var(1)),
]
);
}
#[test]
fn equal_elements_dyn_two_slices() {
let slice = Tuple::from(Slice::new(Type::free_var(0), UnknownLen::free_var(0)));
let other_slice = Tuple::from(Slice::new(Type::NUM, UnknownLen::free_var(1)));
let equal_elements: Vec<_> = slice.equal_elements_dyn(&other_slice).collect();
assert_eq!(equal_elements, vec![(&Type::free_var(0), &Type::NUM)]);
}
#[test]
fn equal_elements_dyn_two_complex_tuples() {
let (tuple, other_tuple) = create_test_tuples();
let equal_elements: Vec<_> = tuple.equal_elements_dyn(&other_tuple).collect();
assert_eq!(
equal_elements,
vec![
// Middle elements
(&Type::free_var(0), &Type::BOOL),
// Borders
(&Type::NUM, &Type::NUM),
(&Type::free_var(2), &Type::free_var(1)),
// Non-borders in first tuple.
(&Type::free_var(0), &Type::BOOL),
// Non-borders in second tuple.
(&Type::free_var(0), &Type::free_var(3)),
]
);
}
#[test]
fn tuple_indexing() {
// Ordinary tuple.
let tuple = Tuple::from(vec![Type::NUM, Type::BOOL]);
assert_eq!(*tuple.get_element(0, TupleLen::ZERO).unwrap(), Type::NUM,);
assert_eq!(*tuple.get_element(1, TupleLen::ZERO).unwrap(), Type::BOOL,);
assert_matches!(
tuple.get_element(2, TupleLen::ZERO).unwrap_err(),
IndexError::OutOfBounds
);
// Slice.
let tuple = Tuple::from(Slice::new(Type::NUM, UnknownLen::param(0)));
assert_eq!(*tuple.get_element(0, TupleLen::from(3)).unwrap(), Type::NUM);
assert_matches!(
tuple.get_element(3, TupleLen::from(3)).unwrap_err(),
IndexError::OutOfBounds
);
assert_matches!(
tuple
.get_element(0, UnknownLen::free_var(0).into())
.unwrap_err(),
IndexError::NoInfo
);
assert_eq!(
*tuple.get_element(0, UnknownLen::free_var(0) + 1).unwrap(),
Type::NUM
);
// Tuple with all three components.
let (tuple, _) = create_test_tuples();
assert_eq!(
*tuple
.get_element(0, UnknownLen::free_var(0).into())
.unwrap(),
Type::NUM
);
assert_matches!(
tuple
.get_element(1, UnknownLen::free_var(0).into())
.unwrap_err(),
IndexError::NoInfo
);
assert_eq!(*tuple.get_element(1, 2.into()).unwrap(), Type::free_var(0));
assert_eq!(*tuple.get_element(3, 2.into()).unwrap(), Type::BOOL);
assert_matches!(
tuple.get_element(5, 2.into()).unwrap_err(),
IndexError::OutOfBounds
);
}
}