1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
//! Compile-time formatting and derived functionality (e.g., panics / assertions).
//!
//! # What?
//!
//! This crate allows formatting values in compile time (e.g., in `const fn`s). The formatted values
//! are not required to be constants; e.g., arguments or local vars in `const fn` can be formatted.
//!
//! Features:
//!
//! - Zero dependencies.
//! - Unconditionally `#[no_std]`-compatible.
//! - The formatting logic is space-efficient; i.e., it allocates the least amount of bytes
//!   that can provably to be sufficient for all possible provided inputs. As a consequence, non-constant
//!   formatted args require a [format specifier](Fmt).
//! - Does not rely on proc macros. This makes the library more lightweight.
//!
//! # Why?
//!
//! A guiding use case for the crate is richer dynamic compile-time panic messages. It can be used
//! in other contexts as well (including in runtime).
//!
//! # Limitations
//!
//! - Only a few types from the standard library can be formatted: integers, `char`s and `str`ings.
//! - Formatting specifiers do not support hex encoding, debug formatting etc.
//! - Padding logic assumes that any Unicode char has identical displayed width, which isn't really
//!   true (e.g., there are chars that have zero width and instead combine with the previous char).
//!   The same assumption is made by the `std` padding logic.
//!
//! # Alternatives and similar tools
//!
//! - [`const_panic`] provides functionality covering the guiding use case (compile-time panics).
//!   It supports more types and formats at the cost of being more complex. It also uses a different
//!   approach to compute produced message sizes.
//! - [`const_format`] provides general-purpose formatting of constant values. It doesn't seem to support
//!   "dynamic" / non-constant args.
//!
//! [`const_panic`]: https://crates.io/crates/const_panic
//! [`const_format`]: https://crates.io/crates/const_format/
//!
//! # Examples
//!
//! ## Basic usage
//!
//! ```
//! use compile_fmt::{compile_assert, fmt};
//!
//! const THRESHOLD: usize = 42;
//!
//! const fn check_value(value: usize) {
//!     compile_assert!(
//!         value <= THRESHOLD,
//!         "Expected ", value => fmt::<usize>(), " to not exceed ", THRESHOLD
//!     );
//!     // main logic
//! }
//! ```
//!
//! Note the formatting spec produced with [`fmt()`].
//!
//! ## Usage with dynamic strings
//!
//! ```
//! use compile_fmt::{compile_assert, clip};
//!
//! const fn check_str(s: &str) {
//!     const MAX_LEN: usize = 16;
//!     compile_assert!(
//!         s.len() <= MAX_LEN,
//!         "String '", s => clip(MAX_LEN, "…"), "' is too long; \
//!          expected no more than ", MAX_LEN, " bytes"
//!     );
//!     // main logic
//! }
//!```
//!
//! ## Printing dynamically-sized messages
//!
//! `compile_args!` allows specifying capacity of the produced message. This is particularly useful
//! when formatting enums (e.g., to compile-format errors):
//!
//! ```
//! # use compile_fmt::{compile_args, fmt, CompileArgs};
//! #[derive(Debug)]
//! enum Error {
//!     Number(u64),
//!     Tuple(usize, char),
//! }
//!
//! type ErrorArgs = CompileArgs<55>;
//! // ^ 55 is the exact lower boundary on capacity. It's valid to specify
//! // a greater value, e.g. 64.
//!
//! impl Error {
//!     const fn fmt(&self) -> ErrorArgs {
//!         match *self {
//!             Self::Number(number) => compile_args!(
//!                 capacity: ErrorArgs::CAPACITY,
//!                 "don't like number ", number => fmt::<u64>()
//!             ),
//!             Self::Tuple(pos, ch) => compile_args!(
//!                 "don't like char '", ch => fmt::<char>(), "' at position ",
//!                 pos => fmt::<usize>()
//!             ),
//!         }
//!     }
//! }
//!
//! // `Error::fmt()` can be used as a building block for more complex messages:
//! let err = Error::Tuple(1_234, '?');
//! let message = compile_args!("Operation failed: ", &err.fmt() => fmt::<&ErrorArgs>());
//! assert_eq!(
//!     message.as_str(),
//!     "Operation failed: don't like char '?' at position 1234"
//! );
//! ```
//!
//! See docs for macros and format specifiers for more examples.

#![no_std]
// Documentation settings.
#![doc(html_root_url = "https://docs.rs/compile-fmt/0.1.0")]
// Linter settings.
#![warn(missing_debug_implementations, missing_docs, bare_trait_objects)]
#![warn(clippy::all, clippy::pedantic)]
#![allow(
    clippy::missing_errors_doc,
    clippy::must_use_candidate,
    clippy::module_name_repetitions
)]

use core::{fmt, slice, str};
#[cfg(test)]
extern crate std;

mod argument;
mod format;
mod macros;
#[cfg(test)]
mod tests;
mod utils;

#[doc(hidden)]
pub use crate::argument::{Argument, ArgumentWrapper};
pub use crate::{
    argument::Ascii,
    format::{clip, clip_ascii, fmt, Fmt, FormatArgument, MaxLength, StrLength},
};
use crate::{format::StrFormat, utils::ClippedStr};

/// Formatted string returned by the [`compile_args!`] macro, similar to [`Arguments`](fmt::Arguments).
///
/// The type parameter specifies the compile-time upper boundary of the formatted string length in bytes.
/// It is not necessarily equal to the actual byte length of the formatted string.
#[derive(Debug)]
pub struct CompileArgs<const CAP: usize> {
    buffer: [u8; CAP],
    len: usize,
}

impl<const CAP: usize> fmt::Display for CompileArgs<CAP> {
    fn fmt(&self, formatter: &mut fmt::Formatter<'_>) -> fmt::Result {
        formatter.write_str(self.as_str())
    }
}

impl<const CAP: usize> AsRef<str> for CompileArgs<CAP> {
    fn as_ref(&self) -> &str {
        self.as_str()
    }
}

impl<const CAP: usize> CompileArgs<CAP> {
    /// Capacity of these arguments in bytes.
    pub const CAPACITY: usize = CAP;

    #[doc(hidden)] // Implementation detail of the `compile_args` macro
    #[track_caller]
    pub const fn assert_capacity(required_capacity: usize) {
        compile_assert!(
            CAP >= required_capacity,
            "Insufficient capacity (", CAP => fmt::<usize>(), " bytes) provided \
             for `compile_args` macro; it requires at least ", required_capacity => fmt::<usize>(), " bytes"
        );
    }

    const fn new() -> Self {
        Self {
            buffer: [0_u8; CAP],
            len: 0,
        }
    }

    const fn write_str(self, s: &str, fmt: Option<StrFormat>) -> Self {
        match fmt {
            Some(StrFormat { clip_at, using }) => {
                let clipped = ClippedStr::new(s, clip_at);
                match clipped {
                    ClippedStr::Full(bytes) => self.write_str_bytes(bytes),
                    ClippedStr::Clipped(bytes) => self
                        .write_str_bytes(bytes)
                        .write_str_bytes(using.as_bytes()),
                }
            }
            _ => self.write_str_bytes(s.as_bytes()),
        }
    }

    const fn write_str_bytes(self, s_bytes: &[u8]) -> Self {
        let new_len = self.len + s_bytes.len();
        let mut buffer = self.buffer;
        let mut pos = self.len;

        while pos < new_len {
            buffer[pos] = s_bytes[pos - self.len];
            pos += 1;
        }
        Self {
            buffer,
            len: new_len,
        }
    }

    /// Writes a char to this string. Largely copied from the standard library with minor changes.
    #[allow(clippy::cast_possible_truncation)] // false positive
    const fn write_char(self, c: char) -> Self {
        const TAG_CONT: u8 = 0b_1000_0000;
        const TAG_TWO_BYTES: u8 = 0b_1100_0000;
        const TAG_THREE_BYTES: u8 = 0b_1110_0000;
        const TAG_FOUR_BYTES: u8 = 0b_1111_0000;

        let new_len = self.len + c.len_utf8();
        let mut buffer = self.buffer;
        let pos = self.len;
        let code = c as u32;
        match c.len_utf8() {
            1 => {
                buffer[pos] = code as u8;
            }
            2 => {
                buffer[pos] = (code >> 6 & 0x_1f) as u8 | TAG_TWO_BYTES;
                buffer[pos + 1] = (code & 0x_3f) as u8 | TAG_CONT;
            }
            3 => {
                buffer[pos] = (code >> 12 & 0x_0f) as u8 | TAG_THREE_BYTES;
                buffer[pos + 1] = (code >> 6 & 0x_3f) as u8 | TAG_CONT;
                buffer[pos + 2] = (code & 0x_3f) as u8 | TAG_CONT;
            }
            4 => {
                buffer[pos] = (code >> 18 & 0x_07) as u8 | TAG_FOUR_BYTES;
                buffer[pos + 1] = (code >> 12 & 0x_3f) as u8 | TAG_CONT;
                buffer[pos + 2] = (code >> 6 & 0x_3f) as u8 | TAG_CONT;
                buffer[pos + 3] = (code & 0x_3f) as u8 | TAG_CONT;
            }
            _ => unreachable!(),
        }

        Self {
            buffer,
            len: new_len,
        }
    }

    /// Formats the provided sequence of [`Argument`]s.
    #[doc(hidden)] // implementation detail of crate macros
    pub const fn format(arguments: &[Argument]) -> Self {
        let mut this = Self::new();
        let mut arg_i = 0;
        while arg_i < arguments.len() {
            this = this.format_arg(arguments[arg_i]);
            arg_i += 1;
        }
        this
    }

    /// Returns the `str` value of this formatter.
    pub const fn as_str(&self) -> &str {
        unsafe {
            // SAFETY: This is equivalent to `&self.buffer[..self.len]`, only works in compile time.
            let written_slice = slice::from_raw_parts(self.buffer.as_ptr(), self.len);
            // SAFETY: Safe by construction; written bytes form a valid `str`.
            str::from_utf8_unchecked(written_slice)
        }
    }
}

impl<const CAP: usize> FormatArgument for &CompileArgs<CAP> {
    type Details = ();
    const MAX_BYTES_PER_CHAR: usize = 4;
}

impl<const CAP: usize> MaxLength for &CompileArgs<CAP> {
    const MAX_LENGTH: StrLength = StrLength::both(CAP);
    // ^ Here, the byte length is exact and the char length is the pessimistic upper boundary.
}

#[cfg(doctest)]
doc_comment::doctest!("../README.md");