elastic_elgamal/app/quadratic_voting.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470
//! Quadratic voting application.
use merlin::Transcript;
use rand_core::{CryptoRng, RngCore};
#[cfg(feature = "serde")]
use serde::{Deserialize, Serialize};
use core::fmt;
use crate::{
alloc::Vec, group::Group, Ciphertext, PreparedRange, PublicKey, RangeDecomposition, RangeProof,
SumOfSquaresProof, VerificationError,
};
/// [Quadratic voting] parameters prepared for a certain [`Group`].
///
/// The parameters are:
///
/// - [Receiver key](Self::receiver()) using which votes in [`QuadraticVotingBallot`]s
/// are encrypted
/// - [Number of options](Self::options_count()) in the ballot
/// - [Number of credits](Self::credits()) per ballot
/// - [Maximum number of votes](Self::max_votes()) per option
///
/// See [`QuadraticVotingBallot`] for a detailed description of parameters.
///
/// [Quadratic voting]: https://en.wikipedia.org/wiki/Quadratic_voting
///
/// # Examples
///
/// ```
/// # use elastic_elgamal::{app::QuadraticVotingParams, group::Ristretto, Keypair};
/// # use rand::thread_rng;
/// let (receiver, _) = Keypair::<Ristretto>::generate(&mut thread_rng())
/// .into_tuple();
/// let mut params = QuadraticVotingParams::new(receiver, 5, 20);
/// // 5 options, 20 credits.
/// assert_eq!(params.options_count(), 5);
/// assert_eq!(params.credits(), 20);
/// // By default, max votes per option are determined based on credits
/// assert_eq!(params.max_votes(), 4); // 4 < sqrt(20) < 5
///
/// // It is possible to reduce max votes per ballot.
/// params.set_max_votes(3);
/// assert_eq!(params.max_votes(), 3);
/// ```
#[derive(Debug, Clone)]
pub struct QuadraticVotingParams<G: Group> {
vote_count_range: PreparedRange<G>,
credit_range: PreparedRange<G>,
options_count: usize,
receiver: PublicKey<G>,
}
impl<G: Group> QuadraticVotingParams<G> {
/// Creates new parameters for the specified number of `credits` allocated per voter.
///
/// The maximum number of votes per option is automatically set as `floor(sqrt(credits))`;
/// it can be changed via [`Self::set_max_votes()`].
///
/// # Panics
///
/// Panics if the number of options or credits is zero.
pub fn new(receiver: PublicKey<G>, options: usize, credits: u64) -> Self {
assert!(options > 0, "Number of options must be positive");
assert!(credits > 0, "Number of credits must be positive");
let max_votes = isqrt(credits);
let vote_count_range = RangeDecomposition::optimal(max_votes + 1);
let credit_range = RangeDecomposition::optimal(credits + 1);
Self {
vote_count_range: vote_count_range.into(),
credit_range: credit_range.into(),
options_count: options,
receiver,
}
}
/// Returns the public key for which the [`QuadraticVotingBallot`]s are encrypted.
pub fn receiver(&self) -> &PublicKey<G> {
&self.receiver
}
/// Returns the number of options.
pub fn options_count(&self) -> usize {
self.options_count
}
/// Returns the number of credits per ballot.
pub fn credits(&self) -> u64 {
self.credit_range.decomposition().upper_bound() - 1
}
/// Returns the maximum number of votes per option.
pub fn max_votes(&self) -> u64 {
self.vote_count_range.decomposition().upper_bound() - 1
}
/// Sets the maximum number of votes per option.
///
/// # Panics
///
/// Panics if `max_votes * max_votes` exceeds `credits`; in this case, this number of votes
/// cannot be cast for a single option.
pub fn set_max_votes(&mut self, max_votes: u64) {
assert!(
max_votes * max_votes <= self.credits(),
"Vote bound {max_votes} is too large; its square is greater than credit bound {}",
self.credits()
);
self.vote_count_range = RangeDecomposition::optimal(max_votes + 1).into();
}
fn check_options_count(&self, actual_count: usize) -> Result<(), QuadraticVotingError> {
if self.options_count == actual_count {
Ok(())
} else {
Err(QuadraticVotingError::OptionsLenMismatch {
expected: self.options_count,
actual: actual_count,
})
}
}
}
/// Integer square root of a `u64` number. Uses the digit-by-digit calculation method in base 2;
/// see https://en.wikipedia.org/wiki/Methods_of_computing_square_roots#Binary_numeral_system_(base_2)
fn isqrt(mut x: u64) -> u64 {
let mut root = 0_u64;
let mut power_of_4 = 1_u64 << 62;
while power_of_4 > x {
power_of_4 /= 4;
}
while power_of_4 > 0 {
if x >= root + power_of_4 {
x -= root + power_of_4;
root = root / 2 + power_of_4;
} else {
root /= 2;
}
power_of_4 /= 4;
}
root
}
/// Encrypted ballot for [quadratic voting] together with zero-knowledge proofs of correctness.
///
/// # Overview
///
/// Quadratic voting assumes a non-exclusive selection among `n >= 1` predefined options.
/// Unlike with [`MultiChoice`](crate::app::MultiChoice) polling, a voter can cast more than
/// one vote for a single option. The additional votes come at a quadratic expense for the voter,
/// however. For example, to cast 4 votes for a certain option, a voter needs 16 credits,
/// while single votes for 4 different options are worth 4 credits.
///
/// The `QuadraticVotingBallot` construction assumes that there is a known number of credits
/// for each ballot (e.g., it is uniform across all eligible voters), and that votes are tallied
/// by a tallier or a federation of talliers that jointly control a [`SecretKey`](crate::SecretKey).
/// As such, the ballot is represented as follows:
///
/// - ElGamal [`Ciphertext`] for each of `n` options (can be summed across all valid ballots
/// to get vote totals that will be decrypted by the talliers)
/// - [`RangeProof`] for each of these ciphertexts proving that the encrypted value
/// is in range `0..=V`
/// - [`Ciphertext`] for the number of credits used by the ballot, and a [`RangeProof`]
/// that it is in range `0..=C`
/// - Zero-knowledge [`SumOfSquaresProof`] proving that the encrypted number of credits is computed
/// correctly, i.e., as a sum of squares of the values encrypted in the vote ciphertexts.
///
/// Here, `C` (the number of credits) and `V` (max votes per option) are the protocol parameters
/// encapsulated in [`QuadraticVotingParams`].
///
/// [quadratic voting]: https://en.wikipedia.org/wiki/Quadratic_voting
///
/// # Examples
///
/// ```
/// # use elastic_elgamal::{
/// # app::{QuadraticVotingParams, QuadraticVotingBallot}, group::Ristretto, Keypair,
/// # DiscreteLogTable,
/// # };
/// # use rand::thread_rng;
/// # fn main() -> Result<(), Box<dyn std::error::Error>> {
/// let mut rng = thread_rng();
/// let (pk, sk) = Keypair::<Ristretto>::generate(&mut rng).into_tuple();
/// let params = QuadraticVotingParams::new(pk, 5, 20);
/// // 5 options, 20 credits (= 4 max votes per option)
/// assert_eq!(params.max_votes(), 4);
///
/// let votes = [4, 0, 0, 1, 1];
/// let ballot = QuadraticVotingBallot::new(¶ms, &votes, &mut rng);
/// let encrypted: Vec<_> = ballot.verify(¶ms)?.collect();
///
/// assert_eq!(encrypted.len(), 5);
/// let lookup = DiscreteLogTable::new(0..=params.max_votes());
/// let decrypted: Vec<_> = encrypted
/// .into_iter()
/// .map(|vote| sk.decrypt(vote, &lookup).unwrap())
/// .collect();
/// assert_eq!(decrypted, votes);
/// # Ok(())
/// # }
/// ```
#[derive(Debug, Clone)]
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
#[cfg_attr(feature = "serde", serde(bound = ""))]
pub struct QuadraticVotingBallot<G: Group> {
votes: Vec<CiphertextWithRangeProof<G>>,
credit: CiphertextWithRangeProof<G>,
credit_equivalence_proof: SumOfSquaresProof<G>,
}
#[derive(Debug, Clone)]
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
#[cfg_attr(feature = "serde", serde(bound = ""))]
struct CiphertextWithRangeProof<G: Group> {
ciphertext: Ciphertext<G>,
range_proof: RangeProof<G>,
}
impl<G: Group> CiphertextWithRangeProof<G> {
fn new(ciphertext: Ciphertext<G>, range_proof: RangeProof<G>) -> Self {
Self {
ciphertext,
range_proof,
}
}
}
impl<G: Group> QuadraticVotingBallot<G> {
/// Creates a ballot based on the provided parameters and voter's `votes`.
///
/// # Panics
///
/// Panics if the length of `votes` differs from the number of options in `params`.
pub fn new<R: CryptoRng + RngCore>(
params: &QuadraticVotingParams<G>,
votes: &[u64],
rng: &mut R,
) -> Self {
assert_eq!(
votes.len(),
params.options_count,
"Mismatch between expected and actual number of choices"
);
let credit = votes.iter().map(|&x| x * x).sum::<u64>();
let votes: Vec<_> = votes
.iter()
.map(|&vote_count| {
let (ciphertext, proof) = RangeProof::new(
¶ms.receiver,
¶ms.vote_count_range,
vote_count,
&mut Transcript::new(b"quadratic_voting_variant"),
rng,
);
(ciphertext.generalize(), proof)
})
.collect();
let (credit, credit_range_proof) = RangeProof::new(
¶ms.receiver,
¶ms.credit_range,
credit,
&mut Transcript::new(b"quadratic_voting_credit_range"),
rng,
);
let credit = credit.generalize();
let credit_equivalence_proof = SumOfSquaresProof::new(
votes.iter().map(|(ciphertext, _)| ciphertext),
&credit,
¶ms.receiver,
&mut Transcript::new(b"quadratic_voting_credit_equiv"),
rng,
);
Self {
votes: votes
.into_iter()
.map(|(ciphertext, proof)| CiphertextWithRangeProof::new(ciphertext.into(), proof))
.collect(),
credit: CiphertextWithRangeProof::new(credit.into(), credit_range_proof),
credit_equivalence_proof,
}
}
/// Verifies this ballot against the provided parameters.
///
/// # Errors
///
/// - Returns an error if verification fails.
pub fn verify(
&self,
params: &QuadraticVotingParams<G>,
) -> Result<impl Iterator<Item = Ciphertext<G>> + '_, QuadraticVotingError> {
params.check_options_count(self.votes.len())?;
for (i, vote_count) in self.votes.iter().enumerate() {
vote_count
.range_proof
.verify(
¶ms.receiver,
¶ms.vote_count_range,
vote_count.ciphertext,
&mut Transcript::new(b"quadratic_voting_variant"),
)
.map_err(|error| QuadraticVotingError::Variant { index: i, error })?;
}
self.credit
.range_proof
.verify(
¶ms.receiver,
¶ms.credit_range,
self.credit.ciphertext,
&mut Transcript::new(b"quadratic_voting_credit_range"),
)
.map_err(QuadraticVotingError::CreditRange)?;
self.credit_equivalence_proof
.verify(
self.votes.iter().map(|c| &c.ciphertext),
&self.credit.ciphertext,
¶ms.receiver,
&mut Transcript::new(b"quadratic_voting_credit_equiv"),
)
.map_err(QuadraticVotingError::CreditEquivalence)?;
Ok(self.votes.iter().map(|c| c.ciphertext))
}
}
/// Errors that can occur when verifying [`QuadraticVotingBallot`]s.
#[derive(Debug)]
#[non_exhaustive]
pub enum QuadraticVotingError {
/// Error verifying a [`RangeProof`] for a vote for a particular option.
Variant {
/// Zero-based option index.
index: usize,
/// Error that occurred during range proof verification.
error: VerificationError,
},
/// Error verifying a [`RangeProof`] for credits.
CreditRange(VerificationError),
/// Error verifying the [proof of equivalence](SumOfSquaresProof) for credits.
CreditEquivalence(VerificationError),
/// Mismatch between expected and actual number of options in the ballot.
OptionsLenMismatch {
/// Expected number of options.
expected: usize,
/// Actual number of options.
actual: usize,
},
}
impl fmt::Display for QuadraticVotingError {
fn fmt(&self, formatter: &mut fmt::Formatter<'_>) -> fmt::Result {
match self {
Self::Variant { index, error } => write!(
formatter,
"error verifying range proof for option #{}: {error}",
*index + 1
),
Self::CreditRange(err) => {
write!(formatter, "error verifying range proof for credits: {err}")
}
Self::CreditEquivalence(err) => {
write!(formatter, "error verifying credit equivalence proof: {err}")
}
Self::OptionsLenMismatch { expected, actual } => write!(
formatter,
"number of options in the ballot ({actual}) differs from expected ({expected})"
),
}
}
}
#[cfg(feature = "std")]
impl std::error::Error for QuadraticVotingError {
fn source(&self) -> Option<&(dyn std::error::Error + 'static)> {
match self {
Self::Variant { error, .. }
| Self::CreditRange(error)
| Self::CreditEquivalence(error) => Some(error),
_ => None,
}
}
}
#[cfg(test)]
mod tests {
use super::*;
use crate::{
group::{ElementOps, Ristretto},
DiscreteLogTable, Keypair,
};
use rand::thread_rng;
#[test]
fn isqrt_is_correct() {
let samples = (0..1_000).chain((0..1_000).map(|x| x * 1_000)).chain([
u64::MAX,
u64::MAX - 1,
1 << 63,
1 << 62,
(1 << 62) - 1,
]);
for sample in samples {
let sqrt = isqrt(sample);
assert!(sqrt * sqrt <= sample, "sqrt({sample}) ?= {sqrt}");
let next_square = (sqrt + 1).checked_mul(sqrt + 1);
assert!(
next_square.map_or(true, |sq| sq > sample),
"sqrt({sample}) ?= {sqrt}"
);
}
}
#[test]
fn quadratic_voting() {
let mut rng = thread_rng();
let (pk, sk) = Keypair::generate(&mut rng).into_tuple();
let params = QuadraticVotingParams::<Ristretto>::new(pk, 5, 25);
let ballot = QuadraticVotingBallot::new(¶ms, &[1, 3, 0, 3, 2], &mut rng);
let choices = ballot.verify(¶ms).unwrap();
let lookup_table = DiscreteLogTable::new(0..=5);
let choices: Vec<_> = choices
.map(|c| sk.decrypt(c, &lookup_table).unwrap())
.collect();
assert_eq!(choices, [1, 3, 0, 3, 2]);
{
let mut bogus_ballot = ballot.clone();
bogus_ballot.votes[0].ciphertext.blinded_element += Ristretto::generator();
let err = bogus_ballot.verify(¶ms).map(drop).unwrap_err();
assert!(matches!(
err,
QuadraticVotingError::Variant {
index: 0,
error: VerificationError::ChallengeMismatch
}
));
}
{
let mut bogus_ballot = ballot.clone();
bogus_ballot.credit.ciphertext.blinded_element -= Ristretto::generator();
let err = bogus_ballot.verify(¶ms).map(drop).unwrap_err();
assert!(matches!(err, QuadraticVotingError::CreditRange(_)));
}
let mut bogus_ballot = ballot.clone();
let (ciphertext, proof) = RangeProof::new(
¶ms.receiver,
¶ms.vote_count_range,
3, // << overly large
&mut Transcript::new(b"quadratic_voting_variant"),
&mut rng,
);
bogus_ballot.votes[0] = CiphertextWithRangeProof::new(ciphertext.into(), proof);
let err = bogus_ballot.verify(¶ms).map(drop).unwrap_err();
assert!(matches!(err, QuadraticVotingError::CreditEquivalence(_)));
}
}