elastic_elgamal/dkg.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680
//! Committed Pedersen's distributed key generation (DKG).
//!
//! DKG allows to securely generate shared secret without a need for a trusted
//! dealer. Compare with Feldman's verifiable secret sharing implemented in the [`sharing`] module
//! which requires a trusted dealer.
//!
//! This implementation is based on [Pedersen's DKG], which was shown by [Gennaro et al.]
//! to contain a flaw allowing an adversary to bias distribution of the shared public key.
//! We try to prevent this kind of possible attacks by forcing the parties to
//! commit to their public key shares before receiving public shares from other
//! parties.
//!
//! [Pedersen's DKG]: https://link.springer.com/content/pdf/10.1007/3-540-46416-6_47.pdf
//! [Gennaro et al.]: https://link.springer.com/content/pdf/10.1007/3-540-48910-X_21.pdf
//!
//! # Examples
//!
//! Decentralized key generation for 2-of-3 threshold encryption.
//!
//! ```
//! # use elastic_elgamal::{
//! # group::Ristretto, dkg::*, sharing::Params,
//! # };
//! # use rand::thread_rng;
//! # use std::error::Error as StdError;
//! # fn main() -> Result<(), Box<dyn StdError>> {
//! let mut rng = thread_rng();
//! let params = Params::new(3, 2);
//!
//! // Initialize participants.
//! let participants = (0..3).map(|i| {
//! ParticipantCollectingCommitments::<Ristretto>::new(params, i, &mut rng)
//! });
//! let mut participants: Vec<_> = participants.collect();
//!
//! // Publish commitments from all participants...
//! let commitments: Vec<_> = participants
//! .iter()
//! .map(|participant| participant.commitment())
//! .collect();
//! // ...and consume them from each participant's perspective.
//! for (i, participant) in participants.iter_mut().enumerate() {
//! for (j, &commitment) in commitments.iter().enumerate() {
//! if i != j {
//! participant.insert_commitment(j, commitment);
//! }
//! }
//! }
//!
//! // Transition all participants to the next stage: exchanging polynomials.
//! let mut participants: Vec<_> = participants
//! .into_iter()
//! .map(|participant| participant.finish_commitment_phase())
//! .collect();
//! // Publish each participant's polynomial...
//! let infos: Vec<_> = participants
//! .iter()
//! .map(|participant| participant.public_info().into_owned())
//! .collect();
//! // ...and consume them from each participant's perspective.
//! for (i, participant) in participants.iter_mut().enumerate() {
//! for (j, info) in infos.iter().enumerate() {
//! if i != j {
//! participant.insert_public_polynomial(j, info.clone())?;
//! }
//! }
//! }
//!
//! // Transition all participants to the final phase: exchanging secrets.
//! let mut participants: Vec<_> = participants
//! .into_iter()
//! .map(|participant| participant.finish_polynomials_phase())
//! .collect();
//! // Exchange shares (this should happen over secure peer-to-peer channels).
//! for i in 0..3 {
//! for j in 0..3 {
//! if i == j { continue; }
//! let share = participants[i].secret_share_for_participant(j);
//! participants[j].insert_secret_share(i, share)?;
//! }
//! }
//!
//! // Finalize all participants.
//! let participants = participants
//! .into_iter()
//! .map(|participant| participant.complete())
//! .collect::<Result<Vec<_>, _>>()?;
//! // Check that the shared key is the same for all participants.
//! let expected_key = participants[0].key_set().shared_key();
//! for participant in &participants {
//! assert_eq!(participant.key_set().shared_key(), expected_key);
//! }
//!
//! // Participants can then jointly decrypt messages as showcased
//! // in the example for the `sharing` module.
//! # Ok(())
//! # }
//! ```
use rand_core::{CryptoRng, RngCore};
#[cfg(feature = "serde")]
use serde::{Deserialize, Serialize};
use sha2::{Digest, Sha256};
use zeroize::Zeroizing;
use core::fmt;
#[cfg(feature = "serde")]
use crate::serde::{ElementHelper, VecHelper};
use crate::{
alloc::{vec, Cow, Vec},
group::Group,
proofs::ProofOfPossession,
sharing::{self, ActiveParticipant, Dealer, Params, PublicKeySet, PublicPolynomial},
PublicKey, SecretKey,
};
/// Errors that can occur during the distributed key generation.
#[derive(Debug)]
#[non_exhaustive]
pub enum Error {
/// Secret received from the party does not correspond to their commitment via
/// the public polynomial.
InvalidSecret,
/// Provided commitment does not correspond to the party's public key share.
InvalidCommitment,
/// Secret share for this participant was already provided.
DuplicateShare,
/// Provided proof of possession or public polynomial is malformed.
MalformedParticipantProof(sharing::Error),
/// Public shares obtained from accumulated public polynomial are inconsistent.
InconsistentPublicShares(sharing::Error),
}
impl fmt::Display for Error {
fn fmt(&self, formatter: &mut fmt::Formatter<'_>) -> fmt::Result {
match self {
Self::InvalidSecret => formatter.write_str(
"secret received from the party does not correspond to their commitment via \
public polynomial",
),
Self::InvalidCommitment => formatter.write_str(
"public polynomial received from one of the parties does not correspond \
to their commitment",
),
Self::DuplicateShare => {
formatter.write_str("secret share for this participant was already provided")
}
Self::MalformedParticipantProof(err) => write!(
formatter,
"provided proof of possession or public polynomial is malformed: {err}"
),
Self::InconsistentPublicShares(err) => write!(
formatter,
"public shares obtained from accumulated public polynomial \
are inconsistent: {err}"
),
}
}
}
#[cfg(feature = "std")]
impl std::error::Error for Error {
fn source(&self) -> Option<&(dyn std::error::Error + 'static)> {
match self {
Self::InconsistentPublicShares(err) | Self::MalformedParticipantProof(err) => Some(err),
_ => None,
}
}
}
fn create_commitment<G: Group>(element: &G::Element, opening: &[u8]) -> [u8; 32] {
let mut hasher = Sha256::new();
let mut bytes = vec![0_u8; G::ELEMENT_SIZE];
G::serialize_element(element, &mut bytes);
hasher.update(&bytes);
hasher.update(opening);
hasher.finalize().into()
}
/// Opening for a hash commitment used in Pedersen's distributed key generation.
#[derive(Debug, Clone)]
pub struct Opening(pub(crate) Zeroizing<[u8; 32]>);
/// Participant state during the first stage of the committed Pedersen's distributed key generation.
///
/// During this stage, participants exchange commitments to their public keys via
/// a public bulletin board (e.g., a blockchain).
#[derive(Debug, Clone)]
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
#[cfg_attr(feature = "serde", serde(bound = ""))]
pub struct ParticipantCollectingCommitments<G: Group> {
params: Params,
index: usize,
dealer: Dealer<G>,
commitments: Vec<Option<[u8; 32]>>,
opening: Opening,
}
impl<G: Group> ParticipantCollectingCommitments<G> {
/// Instantiates a distributed key generation participant.
///
/// # Panics
///
/// Panics if `index` is greater or equal to the number of shares.
pub fn new<R: CryptoRng + RngCore>(params: Params, index: usize, rng: &mut R) -> Self {
assert!(index < params.shares);
let dealer = Dealer::new(params, rng);
let mut opening = Zeroizing::new([0_u8; 32]);
rng.fill_bytes(&mut *opening);
let mut commitments = vec![None; params.shares];
let (public_poly, _) = dealer.public_info();
commitments[index] = Some(create_commitment::<G>(&public_poly[0], opening.as_slice()));
Self {
params,
index,
dealer,
commitments,
opening: Opening(opening),
}
}
/// Returns params of this threshold ElGamal encryption scheme.
pub fn params(&self) -> &Params {
&self.params
}
/// Returns 0-based index of this participant.
pub fn index(&self) -> usize {
self.index
}
/// Returns the commitment of participant's share of the joint public key.
///
/// # Panics
///
/// Panics if the commitment is missing which can only happen if this struct got corrupted
/// (e.g., after deserialization).
pub fn commitment(&self) -> [u8; 32] {
self.commitments[self.index].unwrap()
}
/// Inserts a commitment from the participant with index `participant_index`.
///
/// # Panics
///
/// Panics if commitment for given participant was already provided or
/// `participant_index` is out of bounds.
pub fn insert_commitment(&mut self, participant_index: usize, commitment: [u8; 32]) {
assert!(
self.commitments[participant_index].is_none(),
"Commitment for participant {participant_index} is already provided"
);
self.commitments[participant_index] = Some(commitment);
}
/// Returns indices of parties whose commitments were not provided.
pub fn missing_commitments(&self) -> impl Iterator<Item = usize> + '_ {
self.commitments
.iter()
.enumerate()
.filter_map(|(i, commitment)| commitment.is_none().then_some(i))
}
/// Proceeds to the next step of the DKG protocol, in which participants exchange public
/// polynomials.
///
/// # Panics
///
/// Panics if any commitments are missing. If this is not known statically, check
/// with [`Self::missing_commitments()`] before calling this method.
pub fn finish_commitment_phase(self) -> ParticipantCollectingPolynomials<G> {
if let Some(missing_idx) = self.missing_commitments().next() {
panic!("Missing commitment for participant {missing_idx}");
}
let (public_polynomial, _) = self.dealer.public_info();
let mut public_polynomials = vec![None; self.params.shares];
public_polynomials[self.index] = Some(PublicPolynomial::new(public_polynomial));
ParticipantCollectingPolynomials {
params: self.params,
index: self.index,
dealer: self.dealer,
opening: self.opening,
commitments: self.commitments.into_iter().map(Option::unwrap).collect(),
// ^ `unwrap()` is safe due to the above checks
public_polynomials,
}
}
}
/// Public participant information in the distributed key generation protocol. Returned by
/// [`ParticipantCollectingPolynomials::public_info()`].
#[derive(Debug, Clone)]
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
#[cfg_attr(feature = "serde", serde(bound = ""))]
pub struct PublicInfo<'a, G: Group> {
/// Participant's public polynomial.
#[cfg_attr(feature = "serde", serde(with = "VecHelper::<ElementHelper<G>, 1>"))]
pub polynomial: Vec<G::Element>,
/// Proof of possession for the secret polynomial that corresponds to `polynomial`.
pub proof_of_possession: Cow<'a, ProofOfPossession<G>>,
/// Opening for the participant's key commitment.
pub opening: Opening,
}
impl<G: Group> PublicInfo<'_, G> {
/// Converts this information to the owned form.
pub fn into_owned(self) -> PublicInfo<'static, G> {
PublicInfo {
polynomial: self.polynomial,
proof_of_possession: Cow::Owned(self.proof_of_possession.into_owned()),
opening: self.opening,
}
}
}
/// Participant state during the second stage of the committed Pedersen's distributed key generation.
///
/// During this stage, participants exchange public polynomials and openings for the commitments
/// exchanged on the previous stage. The exchange happens using a public bulletin board
/// (e.g., a blockchain).
#[derive(Debug, Clone)]
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
#[cfg_attr(feature = "serde", serde(bound = ""))]
pub struct ParticipantCollectingPolynomials<G: Group> {
params: Params,
index: usize,
dealer: Dealer<G>,
opening: Opening,
commitments: Vec<[u8; 32]>,
public_polynomials: Vec<Option<PublicPolynomial<G>>>,
}
impl<G: Group> ParticipantCollectingPolynomials<G> {
/// Returns params of this threshold ElGamal encryption scheme.
pub fn params(&self) -> &Params {
&self.params
}
/// Returns 0-based index of this participant.
pub fn index(&self) -> usize {
self.index
}
/// Returns public participant information: participant's public polynomial,
/// proof of possession for the corresponding secret polynomial and the opening of
/// the participant's public key share commitment.
pub fn public_info(&self) -> PublicInfo<'_, G> {
let (polynomial, proof) = self.dealer.public_info();
PublicInfo {
polynomial,
proof_of_possession: Cow::Borrowed(proof),
opening: self.opening.clone(),
}
}
/// Returns the indices of parties whose public polynomials were not provided.
pub fn missing_public_polynomials(&self) -> impl Iterator<Item = usize> + '_ {
self.public_polynomials
.iter()
.enumerate()
.filter_map(|(i, poly)| poly.is_none().then_some(i))
}
/// Inserts public polynomial from participant with index `participant_index`
/// their proof of possession of the public polynomial and opening of
/// their previously provided commitment.
///
/// # Errors
///
/// Returns an error if provided polynomial doesn't correspond to the previous
/// commitment or the proof of possession is not valid.
///
/// # Panics
///
/// Panics if `participant_index` is out of bounds.
pub fn insert_public_polynomial(
&mut self,
participant_index: usize,
info: PublicInfo<'_, G>,
) -> Result<(), Error> {
let opening = info.opening.0.as_slice();
let commitment = create_commitment::<G>(&info.polynomial[0], opening);
if self.commitments[participant_index] != commitment {
// provided commitment doesn't match the given public key share
return Err(Error::InvalidCommitment);
}
PublicKeySet::validate(self.params, &info.polynomial, &info.proof_of_possession)
.map_err(Error::MalformedParticipantProof)?;
self.public_polynomials[participant_index] = Some(PublicPolynomial::new(info.polynomial));
Ok(())
}
/// Proceeds to the next step of the DKG protocol, in which participants exchange
/// secret shares.
///
/// # Panics
///
/// Panics if any public polynomials are missing. If this is not known statically, check
/// with [`Self::missing_public_polynomials()`] before calling this method.
pub fn finish_polynomials_phase(self) -> ParticipantExchangingSecrets<G> {
if let Some(missing_idx) = self.missing_public_polynomials().next() {
panic!("Missing public polynomial for participant {missing_idx}");
}
let mut shares_received = vec![false; self.params.shares];
shares_received[self.index] = true;
ParticipantExchangingSecrets {
params: self.params,
index: self.index,
public_polynomials: self.public_polynomials.into_iter().flatten().collect(),
accumulated_share: self.dealer.secret_share_for_participant(self.index),
dealer: self.dealer,
shares_received,
}
}
}
/// Participant state during the third and final stage of the committed Pedersen's
/// distributed key generation.
///
/// During this stage, participants exchange secret shares corresponding to the polynomials
/// exchanged on the previous stage. The exchange happens using secure peer-to-peer channels
/// established between pairs of participants.
#[derive(Debug, Clone)]
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
#[cfg_attr(feature = "serde", serde(bound = ""))]
pub struct ParticipantExchangingSecrets<G: Group> {
params: Params,
index: usize,
dealer: Dealer<G>,
public_polynomials: Vec<PublicPolynomial<G>>,
accumulated_share: SecretKey<G>,
shares_received: Vec<bool>,
}
impl<G: Group> ParticipantExchangingSecrets<G> {
/// Returns params of this threshold ElGamal encryption scheme.
pub fn params(&self) -> &Params {
&self.params
}
/// Returns 0-based index of this participant.
pub fn index(&self) -> usize {
self.index
}
/// Returns the secret share for a participant with the specified `participant_index`.
pub fn secret_share_for_participant(&self, participant_index: usize) -> SecretKey<G> {
self.dealer.secret_share_for_participant(participant_index)
}
/// Returns indices of parties whose secret shares were not provided.
pub fn missing_shares(&self) -> impl Iterator<Item = usize> + '_ {
self.shares_received
.iter()
.enumerate()
.filter_map(|(i, &is_received)| (!is_received).then_some(i))
}
/// Inserts a secret share from participant with index `participant_index` and
/// checks that the share is valid.
///
/// # Errors
///
/// Returns an error if provided secret share doesn't correspond to the participant's
/// public polynomial collected on the previous step of the DKG protocol.
///
/// # Panics
///
/// Panics if `participant_index` is out of bounds.
pub fn insert_secret_share(
&mut self,
participant_index: usize,
secret_share: SecretKey<G>,
) -> Result<(), Error> {
if self.shares_received[participant_index] {
return Err(Error::DuplicateShare);
}
let polynomial = &self.public_polynomials[participant_index];
let idx = (self.index as u64 + 1).into();
let public_share = PublicKey::<G>::from_element(polynomial.value_at(idx));
if public_share.as_element() != G::mul_generator(secret_share.expose_scalar()) {
// point corresponding to the received secret share doesn't lie
// on the public polynomial
return Err(Error::InvalidSecret);
}
self.accumulated_share += secret_share;
self.shares_received[participant_index] = true;
Ok(())
}
/// Completes the distributed key generation protocol returning an [`ActiveParticipant`].
///
/// # Errors
///
/// Returns error if secret shares from some parties were not provided,
/// or if the [`PublicKeySet`] cannot be created from participants' keys.
///
/// # Panics
///
/// Panics if shares from any participants are missing. If this is not known statically, check
/// with [`Self::missing_shares()`] before calling this method.
pub fn complete(self) -> Result<ActiveParticipant<G>, Error> {
if let Some(missing_idx) = self.missing_shares().next() {
panic!("Missing secret share from participant {missing_idx}");
}
let accumulated_polynomial = self
.public_polynomials
.into_iter()
.reduce(|mut acc, poly| {
acc += &poly;
acc
})
.unwrap(); // safe: we have at least ourselves as a participant
let participant_keys = (0..self.params.shares)
.map(|idx| {
let idx = (idx as u64 + 1).into();
PublicKey::from_element(accumulated_polynomial.value_at(idx))
})
.collect();
let key_set = PublicKeySet::from_participants(self.params, participant_keys)
.map_err(Error::InconsistentPublicShares)?;
let active_participant =
ActiveParticipant::new(key_set, self.index, self.accumulated_share)
.map_err(Error::InconsistentPublicShares)?;
Ok(active_participant)
}
}
#[cfg(test)]
mod tests {
use rand::thread_rng;
use super::*;
use crate::{encryption::DiscreteLogTable, group::Ristretto, sharing::Params};
#[test]
fn dkg_shared_2_of_3_key() {
let mut rng = thread_rng();
let params = Params::new(3, 2);
let mut alice = ParticipantCollectingCommitments::<Ristretto>::new(params, 0, &mut rng);
assert_eq!(alice.params().shares, params.shares);
assert_eq!(alice.params().threshold, params.threshold);
assert_eq!(alice.index(), 0);
let mut bob = ParticipantCollectingCommitments::<Ristretto>::new(params, 1, &mut rng);
assert_eq!(bob.index(), 1);
let mut carol = ParticipantCollectingCommitments::<Ristretto>::new(params, 2, &mut rng);
assert_eq!(carol.index(), 2);
assert_eq!(
alice.missing_commitments().collect::<Vec<_>>(),
[bob.index(), carol.index()]
);
exchange_commitments(&mut alice, &mut bob, &mut carol);
let mut alice = alice.finish_commitment_phase();
assert_eq!(alice.params().shares, params.shares);
assert_eq!(alice.params().threshold, params.threshold);
assert_eq!(alice.index(), 0);
let mut bob = bob.finish_commitment_phase();
assert_eq!(bob.index(), 1);
let mut carol = carol.finish_commitment_phase();
assert_eq!(carol.index(), 2);
assert_eq!(
alice.missing_public_polynomials().collect::<Vec<_>>(),
[bob.index(), carol.index()]
);
exchange_polynomials(&mut alice, &mut bob, &mut carol).unwrap();
let mut alice = alice.finish_polynomials_phase();
assert_eq!(alice.params().shares, params.shares);
assert_eq!(alice.params().threshold, params.threshold);
assert_eq!(alice.index(), 0);
let mut bob = bob.finish_polynomials_phase();
assert_eq!(bob.index(), 1);
let mut carol = carol.finish_polynomials_phase();
assert_eq!(carol.index(), 2);
exchange_secret_shares(&mut alice, &mut bob, &mut carol).unwrap();
let alice = alice.complete().unwrap();
let bob = bob.complete().unwrap();
carol.complete().unwrap();
let key_set = alice.key_set();
let ciphertext = key_set.shared_key().encrypt(15_u64, &mut rng);
let (alice_share, proof) = alice.decrypt_share(ciphertext, &mut rng);
key_set
.verify_share(alice_share.into(), ciphertext, alice.index(), &proof)
.unwrap();
let (bob_share, proof) = bob.decrypt_share(ciphertext, &mut rng);
key_set
.verify_share(bob_share.into(), ciphertext, bob.index(), &proof)
.unwrap();
let combined = params
.combine_shares([(alice.index(), alice_share), (bob.index(), bob_share)])
.unwrap();
let lookup_table = DiscreteLogTable::<Ristretto>::new(0..20);
assert_eq!(combined.decrypt(ciphertext, &lookup_table), Some(15));
}
fn exchange_commitments(
alice: &mut ParticipantCollectingCommitments<Ristretto>,
bob: &mut ParticipantCollectingCommitments<Ristretto>,
carol: &mut ParticipantCollectingCommitments<Ristretto>,
) {
let alice_commitment = alice.commitment();
let bob_commitment = bob.commitment();
let carol_commitment = carol.commitment();
alice.insert_commitment(bob.index(), bob_commitment);
alice.insert_commitment(carol.index(), carol_commitment);
bob.insert_commitment(alice.index(), alice_commitment);
bob.insert_commitment(carol.index(), carol_commitment);
carol.insert_commitment(alice.index(), alice_commitment);
carol.insert_commitment(bob.index(), bob_commitment);
}
fn exchange_polynomials(
alice: &mut ParticipantCollectingPolynomials<Ristretto>,
bob: &mut ParticipantCollectingPolynomials<Ristretto>,
carol: &mut ParticipantCollectingPolynomials<Ristretto>,
) -> Result<(), Error> {
let alice_info = alice.public_info().into_owned();
let bob_info = bob.public_info().into_owned();
let carol_info = carol.public_info().into_owned();
alice.insert_public_polynomial(bob.index(), bob_info.clone())?;
alice.insert_public_polynomial(carol.index(), carol_info.clone())?;
bob.insert_public_polynomial(alice.index(), alice_info.clone())?;
bob.insert_public_polynomial(carol.index(), carol_info)?;
carol.insert_public_polynomial(alice.index(), alice_info)?;
carol.insert_public_polynomial(bob.index(), bob_info)?;
Ok(())
}
fn exchange_secret_shares(
alice: &mut ParticipantExchangingSecrets<Ristretto>,
bob: &mut ParticipantExchangingSecrets<Ristretto>,
carol: &mut ParticipantExchangingSecrets<Ristretto>,
) -> Result<(), Error> {
alice.insert_secret_share(bob.index(), bob.secret_share_for_participant(alice.index()))?;
alice.insert_secret_share(
carol.index(),
carol.secret_share_for_participant(alice.index()),
)?;
bob.insert_secret_share(
alice.index(),
alice.secret_share_for_participant(bob.index()),
)?;
bob.insert_secret_share(
carol.index(),
carol.secret_share_for_participant(bob.index()),
)?;
carol.insert_secret_share(
alice.index(),
alice.secret_share_for_participant(carol.index()),
)?;
carol.insert_secret_share(bob.index(), bob.secret_share_for_participant(carol.index()))?;
Ok(())
}
}