elastic_elgamal/encryption.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507
//! `Ciphertext` and closely related types.
use rand_core::{CryptoRng, RngCore};
#[cfg(feature = "serde")]
use serde::{Deserialize, Serialize};
use zeroize::{Zeroize, Zeroizing};
use core::{fmt, marker::PhantomData, ops};
#[cfg(feature = "serde")]
use crate::serde::ElementHelper;
use crate::{
alloc::{vec, HashMap, Vec},
group::{Group, ScalarOps},
PublicKey, SecretKey,
};
/// Ciphertext for ElGamal encryption.
///
/// A ciphertext consists of 2 group elements: the random element `R` and a blinded encrypted
/// value `B`. If the ciphertext encrypts integer value `v`, it holds that
///
/// ```text
/// R = [r]G;
/// B = [v]G + [r]K = [v]G + [k]R;
/// ```
///
/// where:
///
/// - `G` is the conventional group generator
/// - `r` is a random scalar selected by the encrypting party
/// - `K` and `k` are the recipient's public and private keys, respectively.
///
/// Ciphertexts are partially homomorphic: they can be added together or multiplied by a scalar
/// value.
///
/// # Examples
///
/// Basic usage and arithmetic for ciphertexts:
///
/// ```
/// # use elastic_elgamal::{group::Ristretto, DiscreteLogTable, Ciphertext, Keypair};
/// # use rand::thread_rng;
/// // Generate a keypair for the ciphertext receiver.
/// let mut rng = thread_rng();
/// let receiver = Keypair::<Ristretto>::generate(&mut rng);
/// // Create a couple of ciphertexts.
/// let mut enc = receiver.public().encrypt(2_u64, &mut rng);
/// enc += receiver.public().encrypt(3_u64, &mut rng) * 4;
/// // Check that the ciphertext decrypts to 2 + 3 * 4 = 14.
/// let lookup_table = DiscreteLogTable::new(0..20);
/// let decrypted = receiver.secret().decrypt(enc, &lookup_table);
/// assert_eq!(decrypted, Some(14));
/// ```
///
/// Creating a ciphertext of a boolean value together with a proof:
///
/// ```
/// # use elastic_elgamal::{group::Ristretto, Ciphertext, Keypair};
/// # use rand::thread_rng;
/// # fn main() -> Result<(), Box<dyn std::error::Error>> {
/// // Generate a keypair for the ciphertext receiver.
/// let mut rng = thread_rng();
/// let receiver = Keypair::<Ristretto>::generate(&mut rng);
/// // Create and verify a boolean encryption.
/// let (enc, proof) =
/// receiver.public().encrypt_bool(false, &mut rng);
/// receiver.public().verify_bool(enc, &proof)?;
/// # Ok(())
/// # }
/// ```
///
/// Creating a ciphertext of an integer value together with a range proof:
///
/// ```
/// # use elastic_elgamal::{group::Ristretto, Keypair, RangeDecomposition};
/// # use rand::thread_rng;
/// # fn main() -> Result<(), Box<dyn std::error::Error>> {
/// // Generate the ciphertext receiver.
/// let mut rng = thread_rng();
/// let receiver = Keypair::<Ristretto>::generate(&mut rng);
/// // Find the optimal range decomposition for our range
/// // and specialize it for the Ristretto group.
/// let range = RangeDecomposition::optimal(100).into();
///
/// let (ciphertext, proof) = receiver
/// .public()
/// .encrypt_range(&range, 42, &mut rng);
///
/// // Check that the the proof verifies.
/// receiver.public().verify_range(&range, ciphertext, &proof)?;
/// # Ok(())
/// # }
/// ```
#[derive(Clone, Copy)]
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
pub struct Ciphertext<G: Group> {
#[cfg_attr(feature = "serde", serde(with = "ElementHelper::<G>"))]
pub(crate) random_element: G::Element,
#[cfg_attr(feature = "serde", serde(with = "ElementHelper::<G>"))]
pub(crate) blinded_element: G::Element,
}
impl<G: Group> fmt::Debug for Ciphertext<G> {
fn fmt(&self, formatter: &mut fmt::Formatter<'_>) -> fmt::Result {
formatter
.debug_struct("Ciphertext")
.field("random_element", &self.random_element)
.field("blinded_element", &self.blinded_element)
.finish()
}
}
impl<G: Group> Ciphertext<G> {
/// Represents encryption of zero value without the blinding factor.
pub fn zero() -> Self {
Self {
random_element: G::identity(),
blinded_element: G::identity(),
}
}
/// Creates a non-blinded encryption of the specified scalar `value`, i.e., `(O, [value]G)`
/// where `O` is identity and `G` is the conventional group generator.
pub fn non_blinded<T>(value: T) -> Self
where
G::Scalar: From<T>,
{
let scalar = Zeroizing::new(G::Scalar::from(value));
Self {
random_element: G::identity(),
blinded_element: G::mul_generator(&scalar),
}
}
/// Returns a reference to the random element.
pub fn random_element(&self) -> &G::Element {
&self.random_element
}
/// Returns a reference to the blinded element.
pub fn blinded_element(&self) -> &G::Element {
&self.blinded_element
}
/// Serializes this ciphertext as two group elements (the random element,
/// then the blinded value).
pub fn to_bytes(self) -> Vec<u8> {
let mut bytes = vec![0_u8; 2 * G::ELEMENT_SIZE];
G::serialize_element(&self.random_element, &mut bytes[..G::ELEMENT_SIZE]);
G::serialize_element(&self.blinded_element, &mut bytes[G::ELEMENT_SIZE..]);
bytes
}
}
impl<G: Group> ops::Add for Ciphertext<G> {
type Output = Self;
fn add(self, rhs: Self) -> Self {
Self {
random_element: self.random_element + rhs.random_element,
blinded_element: self.blinded_element + rhs.blinded_element,
}
}
}
impl<G: Group> ops::AddAssign for Ciphertext<G> {
fn add_assign(&mut self, rhs: Self) {
*self = *self + rhs;
}
}
impl<G: Group> ops::Sub for Ciphertext<G> {
type Output = Self;
fn sub(self, rhs: Self) -> Self {
Self {
random_element: self.random_element - rhs.random_element,
blinded_element: self.blinded_element - rhs.blinded_element,
}
}
}
impl<G: Group> ops::SubAssign for Ciphertext<G> {
fn sub_assign(&mut self, rhs: Self) {
*self = *self - rhs;
}
}
impl<G: Group> ops::Mul<&G::Scalar> for Ciphertext<G> {
type Output = Self;
fn mul(self, rhs: &G::Scalar) -> Self {
Self {
random_element: self.random_element * rhs,
blinded_element: self.blinded_element * rhs,
}
}
}
impl<G: Group> ops::Mul<u64> for Ciphertext<G> {
type Output = Self;
fn mul(self, rhs: u64) -> Self {
let scalar = G::Scalar::from(rhs);
self * &scalar
}
}
impl<G: Group> ops::Neg for Ciphertext<G> {
type Output = Self;
fn neg(self) -> Self::Output {
Self {
random_element: -self.random_element,
blinded_element: -self.blinded_element,
}
}
}
/// Lookup table for discrete logarithms.
///
/// For [`Ciphertext`]s to be partially homomorphic, the encrypted values must be
/// group scalars linearly mapped to group elements: `x -> [x]G`, where `G` is the group
/// generator. After decryption it is necessary to map the decrypted group element back to a scalar
/// (i.e., get its discrete logarithm with base `G`). Because of discrete logarithm assumption,
/// this task is computationally infeasible in the general case; however, if the possible range
/// of encrypted values is small, it is possible to "cheat" by precomputing mapping `[x]G -> x`
/// for all allowed `x` ahead of time. This is exactly what `DiscreteLogTable` does.
///
/// # Examples
///
/// ```
/// # use elastic_elgamal::{group::Ristretto, DiscreteLogTable, Ciphertext, Keypair};
/// # use rand::thread_rng;
/// let mut rng = thread_rng();
/// let receiver = Keypair::<Ristretto>::generate(&mut rng);
/// let ciphertexts = (0_u64..16)
/// .map(|i| receiver.public().encrypt(i, &mut rng));
/// // Assume that we know that the plaintext is in range 0..16,
/// // e.g., via a zero-knowledge proof.
/// let lookup_table = DiscreteLogTable::new(0..16);
/// // Then, we can use the lookup table to decrypt values.
/// // A single table may be shared for multiple decryption operations
/// // (i.e., it may be constructed ahead of time).
/// for (i, enc) in ciphertexts.enumerate() {
/// assert_eq!(
/// receiver.secret().decrypt(enc, &lookup_table),
/// Some(i as u64)
/// );
/// }
/// ```
#[derive(Debug, Clone)]
pub struct DiscreteLogTable<G: Group> {
inner: HashMap<Vec<u8>, u64>,
_t: PhantomData<G>,
}
impl<G: Group> DiscreteLogTable<G> {
/// Creates a lookup table for the specified `values`.
pub fn new(values: impl IntoIterator<Item = u64>) -> Self {
let lookup_table = values
.into_iter()
.filter(|&value| value != 0)
.map(|i| {
let element = G::vartime_mul_generator(&G::Scalar::from(i));
let mut bytes = vec![0_u8; G::ELEMENT_SIZE];
G::serialize_element(&element, &mut bytes);
(bytes, i)
})
.collect();
Self {
inner: lookup_table,
_t: PhantomData,
}
}
/// Gets the discrete log of `decrypted_element`, or `None` if it is not present among `values`
/// stored in this table.
pub fn get(&self, decrypted_element: &G::Element) -> Option<u64> {
if G::is_identity(decrypted_element) {
// The identity element may have a special serialization (e.g., in SEC standard
// for elliptic curves), so we check it separately.
Some(0)
} else {
let mut bytes = vec![0_u8; G::ELEMENT_SIZE];
G::serialize_element(decrypted_element, &mut bytes);
self.inner.get(&bytes).copied()
}
}
}
/// [`Ciphertext`] together with the random scalar used to create it.
#[derive(Debug, Clone)]
#[doc(hidden)] // only public for benchmarking
pub struct ExtendedCiphertext<G: Group> {
pub(crate) inner: Ciphertext<G>,
pub(crate) random_scalar: SecretKey<G>,
}
impl<G: Group> ExtendedCiphertext<G> {
/// Creates a ciphertext of `value` for the specified `receiver`.
pub(crate) fn new<R: CryptoRng + RngCore>(
value: G::Element,
receiver: &PublicKey<G>,
rng: &mut R,
) -> Self {
let random_scalar = SecretKey::<G>::generate(rng);
let random_element = G::mul_generator(random_scalar.expose_scalar());
let dh_element = receiver.as_element() * random_scalar.expose_scalar();
let blinded_element = value + dh_element;
Self {
inner: Ciphertext {
random_element,
blinded_element,
},
random_scalar,
}
}
pub(crate) fn zero() -> Self {
Self {
inner: Ciphertext::zero(),
random_scalar: SecretKey::new(G::Scalar::from(0_u64)),
}
}
pub(crate) fn with_value<V>(self, value: V) -> CiphertextWithValue<G, V>
where
V: Zeroize,
G::Scalar: From<V>,
{
CiphertextWithValue {
inner: self,
value: Zeroizing::new(value),
}
}
}
impl<G: Group> ops::Add for ExtendedCiphertext<G> {
type Output = Self;
fn add(self, rhs: Self) -> Self::Output {
Self {
inner: self.inner + rhs.inner,
random_scalar: self.random_scalar + rhs.random_scalar,
}
}
}
impl<G: Group> ops::AddAssign for ExtendedCiphertext<G> {
fn add_assign(&mut self, rhs: Self) {
self.inner += rhs.inner;
self.random_scalar += rhs.random_scalar;
}
}
impl<G: Group> ops::Sub for ExtendedCiphertext<G> {
type Output = Self;
fn sub(self, rhs: Self) -> Self::Output {
Self {
inner: self.inner - rhs.inner,
random_scalar: self.random_scalar - rhs.random_scalar,
}
}
}
/// ElGamal [`Ciphertext`] together with fully retained information about the encrypted value and
/// randomness used to create the ciphertext.
///
/// This type can be used to produce certain kinds of proofs, such as
/// [`SumOfSquaresProof`](crate::SumOfSquaresProof).
#[derive(Debug)]
pub struct CiphertextWithValue<G: Group, V: Zeroize = <G as ScalarOps>::Scalar> {
inner: ExtendedCiphertext<G>,
value: Zeroizing<V>,
}
impl<G: Group, V: Zeroize> From<CiphertextWithValue<G, V>> for Ciphertext<G> {
fn from(ciphertext: CiphertextWithValue<G, V>) -> Self {
ciphertext.inner.inner
}
}
impl<G: Group, V> CiphertextWithValue<G, V>
where
V: Copy + Zeroize,
G::Scalar: From<V>,
{
/// Encrypts a value for the specified receiver.
///
/// This is a lower-level operation compared to [`PublicKey::encrypt()`] and should be used
/// if the resulting ciphertext is necessary to produce proofs.
pub fn new<R: CryptoRng + RngCore>(value: V, receiver: &PublicKey<G>, rng: &mut R) -> Self {
let scalar = Zeroizing::new(G::Scalar::from(value));
let element = G::mul_generator(&scalar);
ExtendedCiphertext::new(element, receiver, rng).with_value(value)
}
/// Converts the enclosed value into a scalar.
pub fn generalize(self) -> CiphertextWithValue<G> {
CiphertextWithValue {
inner: self.inner,
value: Zeroizing::new(G::Scalar::from(*self.value)),
}
}
}
impl<G: Group, V> CiphertextWithValue<G, V>
where
V: Zeroize,
G::Scalar: From<V>,
{
/// Returns a reference to the contained [`Ciphertext`].
pub fn inner(&self) -> &Ciphertext<G> {
&self.inner.inner
}
pub(crate) fn extended_ciphertext(&self) -> &ExtendedCiphertext<G> {
&self.inner
}
pub(crate) fn randomness(&self) -> &SecretKey<G> {
&self.inner.random_scalar
}
pub(crate) fn value(&self) -> &V {
&self.value
}
}
#[cfg(test)]
mod tests {
use rand::{thread_rng, Rng};
use super::*;
use crate::{curve25519::scalar::Scalar as Curve25519Scalar, group::Ristretto, Keypair};
#[test]
fn ciphertext_addition() {
let mut rng = thread_rng();
let numbers: Vec<_> = (0..10).map(|_| u64::from(rng.gen::<u32>())).collect();
let sum = numbers.iter().copied().sum::<u64>();
let (pk, sk) = Keypair::<Ristretto>::generate(&mut rng).into_tuple();
let ciphertexts = numbers.into_iter().map(|x| pk.encrypt(x, &mut rng));
let sum_ciphertext = ciphertexts.reduce(ops::Add::add).unwrap();
let decrypted = sk.decrypt_to_element(sum_ciphertext);
assert_eq!(decrypted, Ristretto::vartime_mul_generator(&sum.into()));
}
#[test]
fn ciphertext_mul_by_u64() {
let mut rng = thread_rng();
let (pk, sk) = Keypair::<Ristretto>::generate(&mut rng).into_tuple();
for _ in 0..100 {
let x = rng.gen::<u64>();
let multiplier = rng.gen::<u64>();
let ciphertext = pk.encrypt(x, &mut rng);
let decrypted = sk.decrypt_to_element(ciphertext * multiplier);
let expected_decryption =
Curve25519Scalar::from(x) * Curve25519Scalar::from(multiplier);
assert_eq!(
decrypted,
Ristretto::vartime_mul_generator(&expected_decryption)
);
}
}
#[test]
fn ciphertext_negation() {
let mut rng = thread_rng();
let (pk, sk) = Keypair::<Ristretto>::generate(&mut rng).into_tuple();
for _ in 0..100 {
let x = rng.gen::<u64>();
let ciphertext = pk.encrypt(x, &mut rng);
let neg_ciphertext = -ciphertext;
let decrypted = sk.decrypt_to_element(neg_ciphertext);
assert_eq!(
decrypted,
Ristretto::vartime_mul_generator(&-Curve25519Scalar::from(x))
);
}
}
#[test]
fn non_blinded_ciphertext() {
let mut rng = thread_rng();
let (_, sk) = Keypair::<Ristretto>::generate(&mut rng).into_tuple();
for _ in 0..100 {
let x = rng.gen::<u64>();
let ciphertext = Ciphertext::non_blinded(x);
let decrypted = sk.decrypt_to_element(ciphertext);
assert_eq!(
decrypted,
Ristretto::vartime_mul_generator(&Curve25519Scalar::from(x))
);
}
}
}