elastic_elgamal/proofs/log_equality.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242
//! [`LogEqualityProof`] and related logic.
use merlin::Transcript;
use rand_core::{CryptoRng, RngCore};
#[cfg(feature = "serde")]
use serde::{Deserialize, Serialize};
#[cfg(feature = "serde")]
use crate::serde::ScalarHelper;
use crate::{
alloc::{vec, Vec},
group::Group,
proofs::{TranscriptForGroup, VerificationError},
PublicKey, SecretKey,
};
/// Zero-knowledge proof of equality of two discrete logarithms in different bases,
/// aka Chaum–Pedersen protocol.
///
/// # Construction
///
/// This proof is a result of the [Fiat–Shamir transform][fst] applied to a standard
/// ZKP of equality of the two discrete logs in different bases.
///
/// - Public parameters of the proof are the two bases `G` and `K` in a prime-order group
/// in which discrete log problem is believed to be hard.
/// - Prover and verifier both know group elements `R` and `B`, which presumably have
/// the same discrete log in bases `G` and `K` respectively.
/// - Prover additionally knows the discrete log in question: `r = dlog_G(R) = dlog_K(B)`.
///
/// The interactive proof is specified as a sigma protocol (see, e.g., [this course])
/// as follows:
///
/// 1. **Commitment:** The prover generates random scalar `x`. The prover sends to the verifier
/// `X_G = [x]G` and `X_K = [x]K`.
/// 2. **Challenge:** The verifier sends to the prover random scalar `c`.
/// 3. **Response:** The prover computes scalar `s = x + cr` and sends it to the verifier.
///
/// Verification equations are:
///
/// ```text
/// [s]G ?= X_G + [c]R;
/// [s]K ?= X_K + [c]B.
/// ```
///
/// In the non-interactive version of the proof, challenge `c` is derived from `hash(M)`,
/// where `hash()` is a cryptographically secure hash function, and `M` is an optional message
/// verified together with the proof (cf. public-key digital signatures). If `M` is set, we
/// use a proof as a *signature of knowledge*. This allows to tie the proof to the context,
/// so it cannot be (re)used in other contexts.
///
/// To reduce the size of the proof, we use the trick underpinning ring signature constructions.
/// Namely, we represent the proof as `(c, s)`; during verification, we restore `X_G`, `X_K`
/// from the original verification equations above.
///
/// # Implementation details
///
/// - The proof is serialized as 2 scalars: `(c, s)`.
/// - Proof generation is constant-time. Verification is **not** constant-time.
/// - Challenge `c` is derived using [`Transcript`] API.
///
/// # Examples
///
/// ```
/// # use elastic_elgamal::{group::Ristretto, Keypair, SecretKey, LogEqualityProof};
/// # use merlin::Transcript;
/// # use rand::thread_rng;
/// # fn main() -> Result<(), Box<dyn std::error::Error>> {
/// let mut rng = thread_rng();
/// let (log_base, _) =
/// Keypair::<Ristretto>::generate(&mut rng).into_tuple();
/// let (power_g, discrete_log) =
/// Keypair::<Ristretto>::generate(&mut rng).into_tuple();
/// let power_k = log_base.as_element() * discrete_log.expose_scalar();
///
/// let proof = LogEqualityProof::new(
/// &log_base,
/// &discrete_log,
/// (power_g.as_element(), power_k),
/// &mut Transcript::new(b"custom_proof"),
/// &mut rng,
/// );
/// proof.verify(
/// &log_base,
/// (power_g.as_element(), power_k),
/// &mut Transcript::new(b"custom_proof"),
/// )?;
/// # Ok(())
/// # }
/// ```
///
/// [fst]: https://en.wikipedia.org/wiki/Fiat%E2%80%93Shamir_heuristic
/// [this course]: http://www.cs.au.dk/~ivan/Sigma.pdf
#[derive(Debug, Clone, Copy)]
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
#[cfg_attr(feature = "serde", serde(bound = ""))]
pub struct LogEqualityProof<G: Group> {
#[cfg_attr(feature = "serde", serde(with = "ScalarHelper::<G>"))]
challenge: G::Scalar,
#[cfg_attr(feature = "serde", serde(with = "ScalarHelper::<G>"))]
response: G::Scalar,
}
impl<G: Group> LogEqualityProof<G> {
/// Creates a new proof.
///
/// # Parameters
///
/// - `log_base` is the second discrete log base (`K` in the notation above). The first
/// log base is always the [`Group`] generator.
/// - `secret` is the discrete log (`r` in the notation above).
/// - `powers` are `[r]G` and `[r]K`, respectively. It is **not** checked whether `r`
/// is a discrete log of these powers; if this is not the case, the constructed proof
/// will not [`verify`](Self::verify()).
pub fn new<R: CryptoRng + RngCore>(
log_base: &PublicKey<G>,
secret: &SecretKey<G>,
powers: (G::Element, G::Element),
transcript: &mut Transcript,
rng: &mut R,
) -> Self {
transcript.start_proof(b"log_eq");
transcript.append_element_bytes(b"K", log_base.as_bytes());
transcript.append_element::<G>(b"[r]G", &powers.0);
transcript.append_element::<G>(b"[r]K", &powers.1);
let random_scalar = SecretKey::<G>::generate(rng);
transcript.append_element::<G>(b"[x]G", &G::mul_generator(random_scalar.expose_scalar()));
transcript.append_element::<G>(
b"[x]K",
&(log_base.as_element() * random_scalar.expose_scalar()),
);
let challenge = transcript.challenge_scalar::<G>(b"c");
let response = challenge * secret.expose_scalar() + random_scalar.expose_scalar();
Self {
challenge,
response,
}
}
/// Verifies this proof.
///
/// # Parameters
///
/// - `log_base` is the second discrete log base (`K` in the notation above). The first
/// log base is always the [`Group`] generator.
/// - `powers` are group elements presumably equal to `[r]G` and `[r]K` respectively,
/// where `r` is a secret scalar.
///
/// # Errors
///
/// Returns an error if this proof does not verify.
pub fn verify(
&self,
log_base: &PublicKey<G>,
powers: (G::Element, G::Element),
transcript: &mut Transcript,
) -> Result<(), VerificationError> {
let commitments = (
G::vartime_double_mul_generator(&-self.challenge, powers.0, &self.response),
G::vartime_multi_mul(
&[-self.challenge, self.response],
[powers.1, log_base.as_element()],
),
);
transcript.start_proof(b"log_eq");
transcript.append_element_bytes(b"K", log_base.as_bytes());
transcript.append_element::<G>(b"[r]G", &powers.0);
transcript.append_element::<G>(b"[r]K", &powers.1);
transcript.append_element::<G>(b"[x]G", &commitments.0);
transcript.append_element::<G>(b"[x]K", &commitments.1);
let expected_challenge = transcript.challenge_scalar::<G>(b"c");
if expected_challenge == self.challenge {
Ok(())
} else {
Err(VerificationError::ChallengeMismatch)
}
}
/// Serializes this proof into bytes. As described [above](#implementation-details),
/// the is serialized as 2 scalars: `(c, s)`, i.e., challenge and response.
pub fn to_bytes(self) -> Vec<u8> {
let mut bytes = vec![0_u8; 2 * G::SCALAR_SIZE];
G::serialize_scalar(&self.challenge, &mut bytes[..G::SCALAR_SIZE]);
G::serialize_scalar(&self.response, &mut bytes[G::SCALAR_SIZE..]);
bytes
}
/// Attempts to parse the proof from `bytes`. Returns `None` if `bytes` do not represent
/// a well-formed proof.
pub fn from_bytes(bytes: &[u8]) -> Option<Self> {
if bytes.len() != 2 * G::SCALAR_SIZE {
return None;
}
let challenge = G::deserialize_scalar(&bytes[..G::SCALAR_SIZE])?;
let response = G::deserialize_scalar(&bytes[G::SCALAR_SIZE..])?;
Some(Self {
challenge,
response,
})
}
}
#[cfg(test)]
mod tests {
use rand::thread_rng;
use super::*;
use crate::group::Ristretto;
type Keypair = crate::Keypair<Ristretto>;
#[test]
fn log_equality_basics() {
let mut rng = thread_rng();
let log_base = Keypair::generate(&mut rng).public().clone();
for _ in 0..100 {
let (generator_val, secret) = Keypair::generate(&mut rng).into_tuple();
let key_val = log_base.as_element() * secret.expose_scalar();
let proof = LogEqualityProof::new(
&log_base,
&secret,
(generator_val.as_element(), key_val),
&mut Transcript::new(b"testing_log_equality"),
&mut rng,
);
proof
.verify(
&log_base,
(generator_val.as_element(), key_val),
&mut Transcript::new(b"testing_log_equality"),
)
.unwrap();
}
}
}