elastic_elgamal/proofs/
mul.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
//! Proofs related to multiplication.

use merlin::Transcript;
use rand_core::{CryptoRng, RngCore};
#[cfg(feature = "serde")]
use serde::{Deserialize, Serialize};
use zeroize::Zeroizing;

use core::iter;

#[cfg(feature = "serde")]
use crate::serde::{ScalarHelper, VecHelper};
use crate::{
    alloc::Vec, group::Group, proofs::TranscriptForGroup, Ciphertext, CiphertextWithValue,
    PublicKey, SecretKey, VerificationError,
};

/// Zero-knowledge proof that an ElGamal-encrypted value is equal to a sum of squares
/// of one or more other ElGamal-encrypted values.
///
/// # Construction
///
/// Consider the case with a single sum element (i.e., proving that an encrypted value is
/// a square of another encrypted value). The prover wants to prove the knowledge of scalars
///
/// ```text
/// r_x, x, r_z:
///   R_x = [r_x]G, X = [x]G + [r_x]K;
///   R_z = [r_z]G, Z = [x^2]G + [r_z]K,
/// ```
///
/// where
///
/// - `G` is the conventional generator of the considered prime-order group
/// - `K` is a group element equivalent to the receiver's public key
/// - `(R_x, X)` and `(R_z, Z)` are ElGamal ciphertexts of values `x` and `x^2`, respectively.
///
/// Observe that
///
/// ```text
/// r'_z := r_z - x * r_x =>
///   R_z = [r'_z]G + [x]R_x; Z = [x]X + [r'_z]K.
/// ```
///
/// and that proving the knowledge of `(r_x, x, r'_z)` is equivalent to the initial problem.
/// The new problem can be solved using a conventional sigma protocol:
///
/// 1. **Commitment.** The prover generates random scalars `e_r`, `e_x` and `e_z` and commits
///    to them via `E_r = [e_r]G`, `E_x = [e_x]G + [e_r]K`, `E_rz = [e_x]R_x + [e_z]G` and
///    `E_z = [e_x]X + [e_z]K`.
/// 2. **Challenge.** The verifier sends to the prover random scalar `c`.
/// 3. **Response.** The prover computes the following scalars and sends them to the verifier.
///
/// ```text
/// s_r = e_r + c * r_x;
/// s_x = e_x + c * x;
/// s_z = e_z + c * (r_z - x * r_x);
/// ```
///
/// The verification equations are
///
/// ```text
/// [s_r]G ?= E_r + [c]R_x;
/// [s_x]G + [s_r]K ?= E_x + [c]X;
/// [s_x]R_x + [s_z]G ?= E_rz + [c]R_z;
/// [s_x]X + [s_z]K ?= E_z + [c]Z.
/// ```
///
/// The case with multiple squares is a straightforward generalization:
///
/// - `e_r`, `E_r`, `e_x`, `E_x`, `s_r` and `s_x` are independently defined for each
///   partial ciphertext in the same way as above.
/// - Commitments `E_rz` and `E_z` sum over `[e_x]R_x` and `[e_x]X` for all ciphertexts,
///   respectively.
/// - Response `s_z` similarly substitutes `x * r_x` with the corresponding sum.
///
/// A non-interactive version of the proof is obtained by applying [Fiat–Shamir transform][fst].
/// As with [`LogEqualityProof`], it is more efficient to represent a proof as the challenge
/// and responses; in this case, the proof size is `2n + 2` scalars, where `n` is the number of
/// partial ciphertexts.
///
/// [fst]: https://en.wikipedia.org/wiki/Fiat%E2%80%93Shamir_heuristic
/// [`LogEqualityProof`]: crate::LogEqualityProof
#[derive(Debug, Clone)]
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
#[cfg_attr(feature = "serde", serde(bound = ""))]
pub struct SumOfSquaresProof<G: Group> {
    #[cfg_attr(feature = "serde", serde(with = "ScalarHelper::<G>"))]
    challenge: G::Scalar,
    #[cfg_attr(feature = "serde", serde(with = "VecHelper::<ScalarHelper<G>, 2>"))]
    ciphertext_responses: Vec<G::Scalar>,
    #[cfg_attr(feature = "serde", serde(with = "ScalarHelper::<G>"))]
    sum_response: G::Scalar,
}

impl<G: Group> SumOfSquaresProof<G> {
    fn initialize_transcript(transcript: &mut Transcript, receiver: &PublicKey<G>) {
        transcript.start_proof(b"sum_of_squares");
        transcript.append_element_bytes(b"K", receiver.as_bytes());
    }

    /// Creates a new proof that squares of values encrypted in `ciphertexts` for `receiver` sum up
    /// to a value encrypted in `sum_of_squares_ciphertext`.
    ///
    /// All provided ciphertexts must be encrypted for `receiver`; otherwise, the created proof
    /// will not verify.
    #[allow(clippy::needless_collect)] // false positive
    pub fn new<'a, R: RngCore + CryptoRng>(
        ciphertexts: impl Iterator<Item = &'a CiphertextWithValue<G>>,
        sum_of_squares_ciphertext: &CiphertextWithValue<G>,
        receiver: &PublicKey<G>,
        transcript: &mut Transcript,
        rng: &mut R,
    ) -> Self {
        Self::initialize_transcript(transcript, receiver);

        let sum_scalar = SecretKey::<G>::generate(rng);
        let mut sum_random_scalar = sum_of_squares_ciphertext.randomness().clone();

        let partial_scalars: Vec<_> = ciphertexts
            .map(|ciphertext| {
                transcript.append_element::<G>(b"R_x", &ciphertext.inner().random_element);
                transcript.append_element::<G>(b"X", &ciphertext.inner().blinded_element);

                let random_scalar = SecretKey::<G>::generate(rng);
                let random_commitment = G::mul_generator(random_scalar.expose_scalar());
                transcript.append_element::<G>(b"[e_r]G", &random_commitment);
                let value_scalar = SecretKey::<G>::generate(rng);
                let value_commitment = G::mul_generator(value_scalar.expose_scalar())
                    + receiver.as_element() * random_scalar.expose_scalar();
                transcript.append_element::<G>(b"[e_x]G + [e_r]K", &value_commitment);

                let neg_value = Zeroizing::new(-*ciphertext.value());
                sum_random_scalar += ciphertext.randomness() * &neg_value;
                (ciphertext, random_scalar, value_scalar)
            })
            .collect();

        let scalars = partial_scalars
            .iter()
            .map(|(_, _, value_scalar)| value_scalar.expose_scalar())
            .chain(iter::once(sum_scalar.expose_scalar()));
        let random_sum_commitment = {
            let elements = partial_scalars
                .iter()
                .map(|(ciphertext, ..)| ciphertext.inner().random_element)
                .chain(iter::once(G::generator()));
            G::multi_mul(scalars.clone(), elements)
        };
        let value_sum_commitment = {
            let elements = partial_scalars
                .iter()
                .map(|(ciphertext, ..)| ciphertext.inner().blinded_element)
                .chain(iter::once(receiver.as_element()));
            G::multi_mul(scalars, elements)
        };

        transcript.append_element::<G>(b"R_z", &sum_of_squares_ciphertext.inner().random_element);
        transcript.append_element::<G>(b"Z", &sum_of_squares_ciphertext.inner().blinded_element);
        transcript.append_element::<G>(b"[e_x]R_x + [e_z]G", &random_sum_commitment);
        transcript.append_element::<G>(b"[e_x]X + [e_z]K", &value_sum_commitment);
        let challenge = transcript.challenge_scalar::<G>(b"c");

        let ciphertext_responses = partial_scalars
            .into_iter()
            .flat_map(|(ciphertext, random_scalar, value_scalar)| {
                [
                    challenge * ciphertext.randomness().expose_scalar()
                        + random_scalar.expose_scalar(),
                    challenge * ciphertext.value() + value_scalar.expose_scalar(),
                ]
            })
            .collect();
        let sum_response =
            challenge * sum_random_scalar.expose_scalar() + sum_scalar.expose_scalar();

        Self {
            challenge,
            ciphertext_responses,
            sum_response,
        }
    }

    /// Verifies this proof against the provided partial ciphertexts and the ciphertext of the
    /// sum of their squares. The order of partial ciphertexts must correspond to their order
    /// when creating the proof.
    ///
    /// # Errors
    ///
    /// Returns an error if this proof does not verify.
    pub fn verify<'a>(
        &self,
        ciphertexts: impl Iterator<Item = &'a Ciphertext<G>> + Clone,
        sum_of_squares_ciphertext: &Ciphertext<G>,
        receiver: &PublicKey<G>,
        transcript: &mut Transcript,
    ) -> Result<(), VerificationError> {
        let ciphertexts_count = ciphertexts.clone().count();
        VerificationError::check_lengths(
            "ciphertext responses",
            self.ciphertext_responses.len(),
            ciphertexts_count * 2,
        )?;

        Self::initialize_transcript(transcript, receiver);
        let neg_challenge = -self.challenge;

        for (response_chunk, ciphertext) in
            self.ciphertext_responses.chunks(2).zip(ciphertexts.clone())
        {
            transcript.append_element::<G>(b"R_x", &ciphertext.random_element);
            transcript.append_element::<G>(b"X", &ciphertext.blinded_element);

            let r_response = &response_chunk[0];
            let v_response = &response_chunk[1];
            let random_commitment = G::vartime_double_mul_generator(
                &-self.challenge,
                ciphertext.random_element,
                r_response,
            );
            transcript.append_element::<G>(b"[e_r]G", &random_commitment);
            let value_commitment = G::vartime_multi_mul(
                [v_response, r_response, &neg_challenge],
                [
                    G::generator(),
                    receiver.as_element(),
                    ciphertext.blinded_element,
                ],
            );
            transcript.append_element::<G>(b"[e_x]G + [e_r]K", &value_commitment);
        }

        let scalars = OddItems::new(self.ciphertext_responses.iter())
            .chain([&self.sum_response, &neg_challenge]);
        let random_sum_commitment = {
            let elements = ciphertexts
                .clone()
                .map(|c| c.random_element)
                .chain([G::generator(), sum_of_squares_ciphertext.random_element]);
            G::vartime_multi_mul(scalars.clone(), elements)
        };
        let value_sum_commitment = {
            let elements = ciphertexts.map(|c| c.blinded_element).chain([
                receiver.as_element(),
                sum_of_squares_ciphertext.blinded_element,
            ]);
            G::vartime_multi_mul(scalars, elements)
        };

        transcript.append_element::<G>(b"R_z", &sum_of_squares_ciphertext.random_element);
        transcript.append_element::<G>(b"Z", &sum_of_squares_ciphertext.blinded_element);
        transcript.append_element::<G>(b"[e_x]R_x + [e_z]G", &random_sum_commitment);
        transcript.append_element::<G>(b"[e_x]X + [e_z]K", &value_sum_commitment);
        let expected_challenge = transcript.challenge_scalar::<G>(b"c");

        if expected_challenge == self.challenge {
            Ok(())
        } else {
            Err(VerificationError::ChallengeMismatch)
        }
    }
}

/// Thin wrapper around an iterator that drops its even-indexed elements. This is necessary
/// because `Ristretto::vartime_multi_mul()` panics otherwise, which is caused by an imprecise
/// `Iterator::size_hint()` value.
#[derive(Debug, Clone)]
struct OddItems<I> {
    iter: I,
    ended: bool,
}

impl<I: Iterator> OddItems<I> {
    fn new(iter: I) -> Self {
        Self { iter, ended: false }
    }
}

impl<I: Iterator> Iterator for OddItems<I> {
    type Item = I::Item;

    fn next(&mut self) -> Option<Self::Item> {
        if self.ended {
            return None;
        }
        self.ended = self.iter.next().is_none();
        if self.ended {
            return None;
        }

        let item = self.iter.next();
        self.ended = item.is_none();
        item
    }

    fn size_hint(&self) -> (usize, Option<usize>) {
        let (min, max) = self.iter.size_hint();
        (min / 2, max.map(|max| max / 2))
    }
}

#[cfg(test)]
mod tests {
    use super::*;
    use crate::{group::Ristretto, Keypair};

    use rand::thread_rng;

    #[test]
    fn sum_of_squares_proof_basics() {
        let mut rng = thread_rng();
        let (receiver, _) = Keypair::<Ristretto>::generate(&mut rng).into_tuple();
        let ciphertext = CiphertextWithValue::new(3_u64, &receiver, &mut rng).generalize();
        let sq_ciphertext = CiphertextWithValue::new(9_u64, &receiver, &mut rng).generalize();

        let proof = SumOfSquaresProof::new(
            [&ciphertext].into_iter(),
            &sq_ciphertext,
            &receiver,
            &mut Transcript::new(b"test"),
            &mut rng,
        );

        let ciphertext = ciphertext.into();
        let sq_ciphertext = sq_ciphertext.into();
        proof
            .verify(
                [&ciphertext].into_iter(),
                &sq_ciphertext,
                &receiver,
                &mut Transcript::new(b"test"),
            )
            .unwrap();

        let other_ciphertext = receiver.encrypt(8_u64, &mut rng);
        let err = proof
            .verify(
                [&ciphertext].into_iter(),
                &other_ciphertext,
                &receiver,
                &mut Transcript::new(b"test"),
            )
            .unwrap_err();
        assert!(matches!(err, VerificationError::ChallengeMismatch));

        let err = proof
            .verify(
                [&other_ciphertext].into_iter(),
                &sq_ciphertext,
                &receiver,
                &mut Transcript::new(b"test"),
            )
            .unwrap_err();
        assert!(matches!(err, VerificationError::ChallengeMismatch));

        let err = proof
            .verify(
                [&ciphertext].into_iter(),
                &sq_ciphertext,
                &receiver,
                &mut Transcript::new(b"other_transcript"),
            )
            .unwrap_err();
        assert!(matches!(err, VerificationError::ChallengeMismatch));
    }

    #[test]
    fn sum_of_squares_proof_with_bogus_inputs() {
        let mut rng = thread_rng();
        let (receiver, _) = Keypair::<Ristretto>::generate(&mut rng).into_tuple();
        let ciphertext = CiphertextWithValue::new(3_u64, &receiver, &mut rng).generalize();
        let sq_ciphertext = CiphertextWithValue::new(10_u64, &receiver, &mut rng).generalize();

        let proof = SumOfSquaresProof::new(
            [&ciphertext].into_iter(),
            &sq_ciphertext,
            &receiver,
            &mut Transcript::new(b"test"),
            &mut rng,
        );

        let ciphertext = ciphertext.into();
        let sq_ciphertext = sq_ciphertext.into();
        let err = proof
            .verify(
                [&ciphertext].into_iter(),
                &sq_ciphertext,
                &receiver,
                &mut Transcript::new(b"test"),
            )
            .unwrap_err();
        assert!(matches!(err, VerificationError::ChallengeMismatch));
    }

    #[test]
    fn sum_of_squares_proof_with_several_squares() {
        let mut rng = thread_rng();
        let (receiver, _) = Keypair::<Ristretto>::generate(&mut rng).into_tuple();
        let ciphertexts =
            [3_u64, 1, 4, 1].map(|x| CiphertextWithValue::new(x, &receiver, &mut rng).generalize());
        let sq_ciphertext = CiphertextWithValue::new(27_u64, &receiver, &mut rng).generalize();

        let proof = SumOfSquaresProof::new(
            ciphertexts.iter(),
            &sq_ciphertext,
            &receiver,
            &mut Transcript::new(b"test"),
            &mut rng,
        );

        let sq_ciphertext = sq_ciphertext.into();
        proof
            .verify(
                ciphertexts.iter().map(CiphertextWithValue::inner),
                &sq_ciphertext,
                &receiver,
                &mut Transcript::new(b"test"),
            )
            .unwrap();

        // The proof will not verify if ciphertexts are rearranged.
        let err = proof
            .verify(
                ciphertexts.iter().rev().map(CiphertextWithValue::inner),
                &sq_ciphertext,
                &receiver,
                &mut Transcript::new(b"test"),
            )
            .unwrap_err();
        assert!(matches!(err, VerificationError::ChallengeMismatch));

        let err = proof
            .verify(
                ciphertexts.iter().take(2).map(CiphertextWithValue::inner),
                &sq_ciphertext,
                &receiver,
                &mut Transcript::new(b"test"),
            )
            .unwrap_err();
        assert!(matches!(err, VerificationError::LenMismatch { .. }));
    }

    #[test]
    fn odd_items() {
        let odd_items = OddItems::new(iter::once(1).chain([2, 3, 4]));
        assert_eq!(odd_items.size_hint(), (2, Some(2)));
        assert_eq!(odd_items.collect::<Vec<_>>(), [2, 4]);

        let other_items = OddItems::new(0..7);
        assert_eq!(other_items.size_hint(), (3, Some(3)));
        assert_eq!(other_items.collect::<Vec<_>>(), [1, 3, 5]);
    }
}