elastic_elgamal/proofs/possession.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188
//! [`ProofOfPossession`] and related logic.
use merlin::Transcript;
use rand_core::{CryptoRng, RngCore};
#[cfg(feature = "serde")]
use serde::{Deserialize, Serialize};
#[cfg(feature = "serde")]
use crate::serde::{ScalarHelper, VecHelper};
use crate::{
alloc::Vec,
group::Group,
proofs::{TranscriptForGroup, VerificationError},
Keypair, PublicKey, SecretKey,
};
/// Zero-knowledge proof of possession of one or more secret scalars.
///
/// # Construction
///
/// The proof is a generalization of the standard Schnorr protocol for proving knowledge
/// of a discrete log. The difference with the combination of several concurrent Schnorr
/// protocol instances is that the challenge is shared among all instances (which yields a
/// ~2x proof size reduction).
///
/// # Implementation notes
///
/// - Proof generation is constant-time. Verification is **not** constant-time.
///
/// # Examples
///
/// ```
/// # use elastic_elgamal::{group::Ristretto, Keypair, ProofOfPossession};
/// # use merlin::Transcript;
/// # use rand::thread_rng;
/// # fn main() -> Result<(), Box<dyn std::error::Error>> {
/// let mut rng = thread_rng();
/// let keypairs: Vec<_> =
/// (0..5).map(|_| Keypair::<Ristretto>::generate(&mut rng)).collect();
///
/// // Prove possession of the generated key pairs.
/// let proof = ProofOfPossession::new(
/// &keypairs,
/// &mut Transcript::new(b"custom_proof"),
/// &mut rng,
/// );
/// proof.verify(
/// keypairs.iter().map(Keypair::public),
/// &mut Transcript::new(b"custom_proof"),
/// )?;
///
/// // If we change the context of the `Transcript`, the proof will not verify.
/// assert!(proof
/// .verify(
/// keypairs.iter().map(Keypair::public),
/// &mut Transcript::new(b"other_proof"),
/// )
/// .is_err());
/// // Likewise if the public keys are reordered.
/// assert!(proof
/// .verify(
/// keypairs.iter().rev().map(Keypair::public),
/// &mut Transcript::new(b"custom_proof"),
/// )
/// .is_err());
/// # Ok(())
/// # }
/// ```
#[derive(Debug, Clone)]
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
#[cfg_attr(feature = "serde", serde(bound = ""))]
pub struct ProofOfPossession<G: Group> {
#[cfg_attr(feature = "serde", serde(with = "ScalarHelper::<G>"))]
challenge: G::Scalar,
#[cfg_attr(feature = "serde", serde(with = "VecHelper::<ScalarHelper<G>, 1>"))]
responses: Vec<G::Scalar>,
}
impl<G: Group> ProofOfPossession<G> {
/// Creates a proof of possession with the specified `keypairs`.
pub fn new<R: CryptoRng + RngCore>(
keypairs: &[Keypair<G>],
transcript: &mut Transcript,
rng: &mut R,
) -> Self {
Self::from_keys(
keypairs.iter().map(Keypair::secret),
keypairs.iter().map(Keypair::public),
transcript,
rng,
)
}
pub(crate) fn from_keys<'a, R: CryptoRng + RngCore>(
secrets: impl Iterator<Item = &'a SecretKey<G>>,
public_keys: impl Iterator<Item = &'a PublicKey<G>>,
transcript: &mut Transcript,
rng: &mut R,
) -> Self {
transcript.start_proof(b"multi_pop");
let mut key_count = 0;
for public_key in public_keys {
transcript.append_element_bytes(b"K", public_key.as_bytes());
key_count += 1;
}
let random_scalars: Vec<_> = (0..key_count)
.map(|_| {
let randomness = SecretKey::<G>::generate(rng);
let random_element = G::mul_generator(randomness.expose_scalar());
transcript.append_element::<G>(b"R", &random_element);
randomness
})
.collect();
let challenge = transcript.challenge_scalar::<G>(b"c");
let responses = secrets
.zip(random_scalars)
.map(|(log, mut randomness)| {
randomness += log * &challenge;
*randomness.expose_scalar()
})
.collect();
Self {
challenge,
responses,
}
}
/// Verifies this proof against the provided `public_keys`.
///
/// # Errors
///
/// Returns an error if this proof does not verify.
pub fn verify<'a>(
&self,
public_keys: impl Iterator<Item = &'a PublicKey<G>> + Clone,
transcript: &mut Transcript,
) -> Result<(), VerificationError> {
let mut key_count = 0;
transcript.start_proof(b"multi_pop");
for public_key in public_keys.clone() {
transcript.append_element_bytes(b"K", public_key.as_bytes());
key_count += 1;
}
VerificationError::check_lengths("public keys", self.responses.len(), key_count)?;
for (public_key, response) in public_keys.zip(&self.responses) {
let random_element = G::vartime_double_mul_generator(
&-self.challenge,
public_key.as_element(),
response,
);
transcript.append_element::<G>(b"R", &random_element);
}
let expected_challenge = transcript.challenge_scalar::<G>(b"c");
if expected_challenge == self.challenge {
Ok(())
} else {
Err(VerificationError::ChallengeMismatch)
}
}
}
#[cfg(test)]
mod tests {
use rand::thread_rng;
use super::*;
use crate::group::Ristretto;
type Keypair = crate::Keypair<Ristretto>;
#[test]
fn proof_of_possession_basics() {
let mut rng = thread_rng();
let poly: Vec<_> = (0..5).map(|_| Keypair::generate(&mut rng)).collect();
ProofOfPossession::new(&poly, &mut Transcript::new(b"test_multi_PoP"), &mut rng)
.verify(
poly.iter().map(Keypair::public),
&mut Transcript::new(b"test_multi_PoP"),
)
.unwrap();
}
}