elastic_elgamal/proofs/
range.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
//! Range proofs for ElGamal ciphertexts.

use merlin::Transcript;
use rand_core::{CryptoRng, RngCore};
#[cfg(feature = "serde")]
use serde::{Deserialize, Serialize};
use subtle::{ConditionallySelectable, ConstantTimeGreater};
use zeroize::Zeroizing;

use core::{convert::TryFrom, fmt};

use crate::{
    alloc::{vec, HashMap, ToString, Vec},
    encryption::{CiphertextWithValue, ExtendedCiphertext},
    group::Group,
    proofs::{RingProof, RingProofBuilder, TranscriptForGroup},
    Ciphertext, PublicKey, VerificationError,
};

#[derive(Debug, Clone, Copy, PartialEq)]
struct RingSpec {
    size: u64,
    step: u64,
}

/// Decomposition of an integer range `0..n` into one or more sub-ranges. Decomposing the range
/// allows constructing [`RangeProof`]s with size / computational complexity `O(log n)`.
///
/// # Construction
///
/// To build efficient `RangeProof`s, we need to be able to decompose any value `x` in `0..n`
/// into several components, with each of them being in a smaller predefined range; once we
/// have such a decomposition, we can build a [`RingProof`] around it.
/// To build a decomposition, we use the following generic construction:
///
/// ```text
/// 0..n = 0..t_0 + k_0 * (0..t_1 + k_1 * (0..t_2 + …)),
/// ```
///
/// where `t_i` and `k_i` are integers greater than 1. If `x` is a value in `0..n`,
/// it is decomposed as
///
/// ```text
/// x = x_0 + k_0 * x_1 + k_0 * k_1 * x_2 + …; x_i in 0..t_i.
/// ```
///
/// For a decomposition to be valid (i.e., to represent any value in `0..n` and no other values),
/// the following statements are sufficient:
///
/// - `t_i >= k_i` (no gaps in values)
/// - `n = t_0 + k_0 * (t_1 - 1 + k_1 * …)` (exact upper bound).
///
/// The size of a `RingProof` is the sum of upper range bounds `t_i` (= number of responses) + 1
/// (the common challenge). Additionally, we need a ciphertext per each sub-range `0..t_i`
/// (i.e., for each ring in `RingProof`). In practice, proof size is logarithmic:
///
/// | Upper bound `n`| Optimal decomposition | Proof size |
/// |---------------:|-----------------------|-----------:|
/// | 5              | `0..5`                | 6 scalars  |
/// | 10             | `0..5 * 2 + 0..2`     | 8 scalars, 2 elements |
/// | 20             | `0..5 * 4 + 0..4`     | 10 scalars, 2 elements |
/// | 50             | `(0..5 * 5 + 0..5) * 2 + 0..2` | 13 scalars, 4 elements |
/// | 64             | `(0..4 * 4 + 0..4) * 4 + 0..4` | 13 scalars, 4 elements |
/// | 100            | `(0..5 * 5 + 0..5) * 4 + 0..4` | 15 scalars, 4 elements |
/// | 256            | `((0..4 * 4 + 0..4) * 4 + 0..4) * 4 + 0..4` | 17 scalars, 6 elements |
/// | 1000           | `((0..8 * 5 + 0..5) * 5 + 0..5) * 5 + 0..5` | 24 scalars, 6 elements |
///
/// (We do not count one of sub-range ciphertexts since it can be restored from the other
/// sub-range ciphertexts and the original ciphertext of the value.)
///
/// ## Notes
///
/// - Decomposition of some values may be non-unique, but this is fine for our purposes.
/// - Encoding of a value in a certain base is a partial case, with all `t_i` and `k_i` equal
///   to the base. It only works for `n` being a power of the base.
/// - Other types of decompositions may perform better, but this one has a couple
///   of nice properties. It works for all `n`s, and the optimal decomposition can be found
///   recursively.
/// - If we know how to create / verify range proofs for `0..N`, proofs for all ranges `0..n`,
///   `n < N` can be constructed as a combination of 2 proofs: a proof that encrypted value `x`
///   is in `0..N` and that `n - 1 - x` is in `0..N`. (The latter is proved for a ciphertext
///   obtained by the matching linear transform of the original ciphertext of `x`.)
///   This does not help us if proofs for `0..N` are constructed using [`RingProof`]s,
///   but allows estimating for which `n` a [Bulletproofs]-like construction would become
///   more efficient despite using 2 proofs. If we take `N = 2^(2^P)`
///   and the "vanilla" Bulletproof length `2 * P + 9`, this threshold is around `n = 2000`.
///
/// [Bulletproofs]: https://crypto.stanford.edu/bulletproofs/
///
/// # Examples
///
/// Finding out the optimal decomposition for a certain range:
///
/// ```
/// # use elastic_elgamal::RangeDecomposition;
/// let range = RangeDecomposition::optimal(42);
/// assert_eq!(range.to_string(), "6 * 0..7 + 0..6");
/// assert_eq!(range.proof_size(), 16); // 14 scalars, 2 elements
///
/// let range = RangeDecomposition::optimal(100);
/// assert_eq!(range.to_string(), "20 * 0..5 + 4 * 0..5 + 0..4");
/// assert_eq!(range.proof_size(), 19); // 15 scalars, 4 elements
/// ```
///
/// See [`RangeProof`] docs for an end-to-end example of usage.
#[derive(Debug, Clone, PartialEq)]
pub struct RangeDecomposition {
    rings: Vec<RingSpec>,
}

impl fmt::Display for RangeDecomposition {
    fn fmt(&self, formatter: &mut fmt::Formatter<'_>) -> fmt::Result {
        for (i, ring_spec) in self.rings.iter().enumerate() {
            if ring_spec.step > 1 {
                write!(formatter, "{} * ", ring_spec.step)?;
            }
            write!(formatter, "0..{}", ring_spec.size)?;

            if i + 1 < self.rings.len() {
                formatter.write_str(" + ")?;
            }
        }
        Ok(())
    }
}

/// `RangeDecomposition` together with optimized parameters.
#[derive(Debug, Clone)]
struct OptimalDecomposition {
    decomposition: RangeDecomposition,
    optimal_len: u64,
}

#[allow(
    clippy::cast_possible_truncation,
    clippy::cast_precision_loss,
    clippy::cast_sign_loss
)]
impl RangeDecomposition {
    /// Finds an optimal decomposition of the range with the given `upper_bound` in terms
    /// of space of the range proof.
    ///
    /// Empirically, this method has sublinear complexity, but may work slowly for large values
    /// of `upper_bound` (say, larger than 1 billion).
    ///
    /// # Panics
    ///
    /// Panics if `upper_bound` is less than 2.
    pub fn optimal(upper_bound: u64) -> Self {
        assert!(upper_bound >= 2, "`upper_bound` must be greater than 1");

        let mut optimal_values = HashMap::new();
        Self::optimize(upper_bound, &mut optimal_values).decomposition
    }

    fn just(capacity: u64) -> Self {
        let spec = RingSpec {
            size: capacity,
            step: 1,
        };
        Self { rings: vec![spec] }
    }

    fn combine_mul(self, new_ring_size: u64, multiplier: u64) -> Self {
        let mut combined_rings = self.rings;
        for spec in &mut combined_rings {
            spec.step *= multiplier;
        }
        combined_rings.push(RingSpec {
            size: new_ring_size,
            step: 1,
        });

        Self {
            rings: combined_rings,
        }
    }

    /// Returns the exclusive upper bound of the range presentable by this decomposition.
    pub fn upper_bound(&self) -> u64 {
        self.rings
            .iter()
            .map(|spec| (spec.size - 1) * spec.step)
            .sum::<u64>()
            + 1
    }

    /// Returns the total number of items in all rings.
    fn rings_size(&self) -> u64 {
        self.rings.iter().map(|spec| spec.size).sum::<u64>()
    }

    /// Returns the size of [`RangeProof`]s using this decomposition, measured as a total number
    /// of scalars and group elements in the proof. Computational complexity of creating and
    /// verifying proofs is also linear w.r.t. this number.
    pub fn proof_size(&self) -> u64 {
        self.rings_size() + 2 * self.rings.len() as u64 - 1
    }

    fn decompose(&self, value_indexes: &mut Vec<usize>, mut secret_value: u64) {
        for ring_spec in &self.rings {
            let mut value_index = secret_value / ring_spec.step;
            let ring_max_value = ring_spec.size - 1;
            let overflow = value_index.ct_gt(&ring_max_value);
            value_index.conditional_assign(&ring_max_value, overflow);
            value_indexes.push(value_index as usize);
            secret_value -= value_index * ring_spec.step;
        }

        debug_assert_eq!(secret_value, 0, "unused secret value for {self:?}");
    }

    /// We decompose our range `0..n` as `0..t + k * 0..T`, where `t >= 2`, `T >= 2`,
    /// `k >= 2`. For all values in the range to be presentable, we need `t >= k` (otherwise,
    /// there will be gaps) and
    ///
    /// ```text
    /// n - 1 = t - 1 + k * (T - 1) <=> n = t + k * (T - 1)
    /// ```
    ///
    /// (to accurately represent the upper bound). For valid decompositions, we apply the
    /// same decomposition recursively to `0..T`. If `P(n)` is the optimal proof length for
    /// range `0..n`, we thus obtain
    ///
    /// ```text
    /// P(n) = min_(t, k) { t + 2 + P((n - t) / k + 1) }.
    /// ```
    ///
    /// Here, `t` is the number of commitments (= number of scalars for ring `0..t`), plus
    /// 2 group elements in a partial ElGamal ciphertext corresponding to the ring.
    ///
    /// We additionally trim the solution space using a lower-bound estimate
    ///
    /// ```text
    /// P(n) >= 3 * log2(n),
    /// ```
    ///
    /// which can be proven recursively.
    fn optimize(
        upper_bound: u64,
        optimal_values: &mut HashMap<u64, OptimalDecomposition>,
    ) -> OptimalDecomposition {
        if let Some(opt) = optimal_values.get(&upper_bound) {
            return opt.clone();
        }

        let mut opt = OptimalDecomposition {
            optimal_len: upper_bound + 2,
            decomposition: RangeDecomposition::just(upper_bound),
        };

        for first_ring_size in 2_u64.. {
            if first_ring_size + 2 > opt.optimal_len {
                // Any further estimate will be worse than the current optimum.
                break;
            }

            let remaining_capacity = upper_bound - first_ring_size;
            for multiplier in 2_u64..=first_ring_size {
                if remaining_capacity % multiplier != 0 {
                    continue;
                }
                let inner_upper_bound = remaining_capacity / multiplier + 1;
                if inner_upper_bound < 2 {
                    // Since `inner_upper_bound` decreases w.r.t. `multiplier`, we can
                    // break here.
                    break;
                }

                let best_estimate =
                    first_ring_size + 2 + Self::lower_len_estimate(inner_upper_bound);
                if best_estimate > opt.optimal_len {
                    continue;
                }

                let inner_opt = Self::optimize(inner_upper_bound, optimal_values);
                let candidate_len = first_ring_size + 2 + inner_opt.optimal_len;
                let candidate_rings = 1 + inner_opt.decomposition.rings.len();

                if candidate_len < opt.optimal_len
                    || (candidate_len == opt.optimal_len
                        && candidate_rings < opt.decomposition.rings.len())
                {
                    opt.optimal_len = candidate_len;
                    opt.decomposition = inner_opt
                        .decomposition
                        .combine_mul(first_ring_size, multiplier);
                }
            }
        }

        debug_assert!(
            opt.optimal_len >= Self::lower_len_estimate(upper_bound),
            "Lower len estimate {est} is invalid for {bound}: {opt:?}",
            est = Self::lower_len_estimate(upper_bound),
            bound = upper_bound,
            opt = opt
        );
        optimal_values.insert(upper_bound, opt.clone());
        opt
    }

    #[cfg(feature = "std")]
    fn lower_len_estimate(upper_bound: u64) -> u64 {
        ((upper_bound as f64).log2() * 3.0).ceil() as u64
    }

    #[cfg(not(feature = "std"))]
    fn lower_len_estimate(upper_bound: u64) -> u64 {
        Self::int_lower_len_estimate(upper_bound)
    }

    // We may not have floating-point arithmetics on no-std targets; thus, we use
    // a less precise estimate.
    #[cfg(any(test, not(feature = "std")))]
    #[inline]
    fn int_lower_len_estimate(upper_bound: u64) -> u64 {
        let log2_upper_bound = if upper_bound == 0 {
            0
        } else {
            63 - u64::from(upper_bound.leading_zeros()) // rounded down
        };
        log2_upper_bound * 3
    }
}

/// [`RangeDecomposition`] together with values precached for creating and/or verifying
/// [`RangeProof`]s in a certain [`Group`].
#[derive(Debug, Clone)]
pub struct PreparedRange<G: Group> {
    inner: RangeDecomposition,
    admissible_values: Vec<Vec<G::Element>>,
}

impl<G: Group> From<RangeDecomposition> for PreparedRange<G> {
    fn from(decomposition: RangeDecomposition) -> Self {
        Self::new(decomposition)
    }
}

impl<G: Group> PreparedRange<G> {
    fn new(inner: RangeDecomposition) -> Self {
        let admissible_values = Vec::with_capacity(inner.rings.len());
        let admissible_values = inner.rings.iter().fold(admissible_values, |mut acc, spec| {
            let ring_values: Vec<_> = (0..spec.size)
                .map(|i| G::vartime_mul_generator(&(i * spec.step).into()))
                .collect();
            acc.push(ring_values);
            acc
        });

        Self {
            inner,
            admissible_values,
        }
    }

    /// Returns a reference to the contained decomposition.
    pub fn decomposition(&self) -> &RangeDecomposition {
        &self.inner
    }

    /// Decomposes the provided `secret_value` into value indexes in constituent rings.
    fn decompose(&self, secret_value: u64) -> Zeroizing<Vec<usize>> {
        assert!(
            secret_value < self.inner.upper_bound(),
            "Secret value must be in range 0..{}",
            self.inner.upper_bound()
        );
        // We immediately allocate the necessary capacity for `decomposition`.
        let mut decomposition = Zeroizing::new(Vec::with_capacity(self.admissible_values.len()));
        self.inner.decompose(&mut decomposition, secret_value);
        decomposition
    }
}

/// Zero-knowledge proof that an ElGamal ciphertext encrypts a value into a certain range `0..n`.
///
/// # Construction
///
/// To make the proof more compact – `O(log n)` in terms of size and proving / verification
/// complexity – we use the same trick as for [Pedersen commitments] (used, e.g., for confidential
/// transaction amounts in [Elements]):
///
/// 1. Represent the encrypted value `x` as `x = x_0 + k_0 * x_1 + k_0 * k_1 * x_2 + …`,
///    where `0 <= x_i < t_i` is the decomposition of `x` as per the [`RangeDecomposition`],
///    `0..t_0 + k_0 * (0..t_1 + …)`.
///    As an example, if `n` is a power of 2, one can choose a decomposition as
///    the base-2 presentation of `x`, i.e., `t_i = k_i = 2` for all `i`.
///    For brevity, denote a multiplier of `x_i` in `x` decomposition as `K_i`,
///    `K_i = k_0 * … * k_{i-1}`; `K_0 = 1` by extension.
/// 2. Split the ciphertext: `E = E_0 + E_1 + …`, where `E_i` encrypts `K_i * x_i`.
/// 3. Produce a [`RingProof`] that for all `i` the encrypted scalar for `E_i`
///    is among 0, `K_i`, …, `K_i * (t_i - 1)`. The range proof consists of all `E_i` ciphertexts
///    and this `RingProof`.
///
/// As with range proofs for Pedersen commitments, this construction is not optimal
/// in terms of space or proving / verification complexity for large ranges;
/// it is linear w.r.t. the bit length of the range.
/// (Constructions like [Bulletproofs] are *logarithmic* w.r.t. the bit length.)
/// Still, it can be useful for small ranges.
///
/// [Pedersen commitments]: https://en.wikipedia.org/wiki/Commitment_scheme
/// [Elements]: https://elementsproject.org/features/confidential-transactions/investigation
/// [Bulletproofs]: https://crypto.stanford.edu/bulletproofs/
///
/// # Examples
///
/// ```
/// # use elastic_elgamal::{
/// #     group::Ristretto, DiscreteLogTable, Keypair, RangeDecomposition, RangeProof, Ciphertext,
/// # };
/// # use merlin::Transcript;
/// # use rand::thread_rng;
/// # fn main() -> Result<(), Box<dyn std::error::Error>> {
/// // Generate the ciphertext receiver.
/// let mut rng = thread_rng();
/// let receiver = Keypair::<Ristretto>::generate(&mut rng);
/// // Find the optimal range decomposition for our range
/// // and specialize it for the Ristretto group.
/// let range = RangeDecomposition::optimal(100).into();
///
/// let (ciphertext, proof) = RangeProof::new(
///     receiver.public(),
///     &range,
///     55,
///     &mut Transcript::new(b"test_proof"),
///     &mut rng,
/// );
/// let ciphertext = Ciphertext::from(ciphertext);
///
/// // Check that the ciphertext is valid
/// let lookup = DiscreteLogTable::new(0..100);
/// assert_eq!(receiver.secret().decrypt(ciphertext, &lookup), Some(55));
/// // ...and that the proof verifies.
/// proof.verify(
///     receiver.public(),
///     &range,
///     ciphertext,
///     &mut Transcript::new(b"test_proof"),
/// )?;
/// # Ok(())
/// # }
/// ```
#[derive(Debug, Clone)]
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
#[cfg_attr(feature = "serde", serde(bound = ""))]
pub struct RangeProof<G: Group> {
    partial_ciphertexts: Vec<Ciphertext<G>>,
    #[cfg_attr(feature = "serde", serde(flatten))]
    inner: RingProof<G>,
}

impl<G: Group> RangeProof<G> {
    /// Encrypts `value` for `receiver` and creates a zero-knowledge proof that the encrypted value
    /// is in `range`.
    ///
    /// This is a lower-level operation; see [`PublicKey::encrypt_range()`] for a higher-level
    /// alternative.
    ///
    /// # Panics
    ///
    /// Panics if `value` is outside the range specified by `range`.
    pub fn new<R: RngCore + CryptoRng>(
        receiver: &PublicKey<G>,
        range: &PreparedRange<G>,
        value: u64,
        transcript: &mut Transcript,
        rng: &mut R,
    ) -> (CiphertextWithValue<G, u64>, Self) {
        let ciphertext = CiphertextWithValue::new(value, receiver, rng);
        let proof = Self::from_ciphertext(receiver, range, &ciphertext, transcript, rng);
        (ciphertext, proof)
    }

    /// Creates a proof that a value in `ciphertext` is in the `range`.
    ///
    /// The caller is responsible for providing a `ciphertext` encrypted for the `receiver`;
    /// if the ciphertext is encrypted for another public key, the resulting proof will not verify.
    ///
    /// # Panics
    ///
    /// Panics if `value` is outside the range specified by `range`.
    pub fn from_ciphertext<R: RngCore + CryptoRng>(
        receiver: &PublicKey<G>,
        range: &PreparedRange<G>,
        ciphertext: &CiphertextWithValue<G, u64>,
        transcript: &mut Transcript,
        rng: &mut R,
    ) -> Self {
        let value_indexes = range.decompose(*ciphertext.value());
        debug_assert_eq!(value_indexes.len(), range.admissible_values.len());
        transcript.start_proof(b"encryption_range_proof");
        transcript.append_message(b"range", range.inner.to_string().as_bytes());

        let ring_responses_size = usize::try_from(range.inner.rings_size())
            .expect("Integer overflow when allocating ring responses");
        let mut ring_responses = vec![G::Scalar::default(); ring_responses_size];

        let mut proof_builder = RingProofBuilder::new(
            receiver,
            range.admissible_values.len(),
            &mut ring_responses,
            transcript,
            rng,
        );

        let mut cumulative_ciphertext = ExtendedCiphertext::zero();
        let mut it = value_indexes.iter().zip(&range.admissible_values);

        let partial_ciphertexts = it
            .by_ref()
            .take(value_indexes.len() - 1)
            .map(|(value_index, admissible_values)| {
                let ciphertext = proof_builder.add_value(admissible_values, *value_index);
                let inner = ciphertext.inner;
                cumulative_ciphertext += ciphertext;
                inner
            })
            .collect();

        let last_partial_ciphertext =
            ciphertext.extended_ciphertext().clone() - cumulative_ciphertext;
        let (&value_index, admissible_values) = it.next().unwrap();
        // ^ `unwrap()` is safe by construction
        proof_builder.add_precomputed_value(
            last_partial_ciphertext,
            admissible_values,
            value_index,
        );

        Self {
            partial_ciphertexts,
            inner: RingProof::new(proof_builder.build(), ring_responses),
        }
    }

    /// Verifies this proof against `ciphertext` for `receiver` and the specified `range`.
    ///
    /// This is a lower-level operation; see [`PublicKey::verify_range()`] for a higher-level
    /// alternative.
    ///
    /// For a proof to verify, all parameters must be identical to ones provided when creating
    /// the proof. In particular, `range` must have the same decomposition.
    ///
    /// # Errors
    ///
    /// Returns an error if this proof does not verify.
    pub fn verify(
        &self,
        receiver: &PublicKey<G>,
        range: &PreparedRange<G>,
        ciphertext: Ciphertext<G>,
        transcript: &mut Transcript,
    ) -> Result<(), VerificationError> {
        // Check decomposition / proof consistency.
        VerificationError::check_lengths(
            "admissible values",
            self.partial_ciphertexts.len() + 1,
            range.admissible_values.len(),
        )?;

        transcript.start_proof(b"encryption_range_proof");
        transcript.append_message(b"range", range.inner.to_string().as_bytes());

        let ciphertext_sum = self
            .partial_ciphertexts
            .iter()
            .fold(Ciphertext::zero(), |acc, ciphertext| acc + *ciphertext);
        let ciphertexts = self
            .partial_ciphertexts
            .iter()
            .copied()
            .chain(Some(ciphertext - ciphertext_sum));

        let admissible_values = range.admissible_values.iter().map(Vec::as_slice);
        self.inner
            .verify(receiver, admissible_values, ciphertexts, transcript)
    }
}

#[cfg(test)]
mod tests {
    use rand::{thread_rng, Rng};
    use test_casing::test_casing;

    use super::*;
    use crate::{
        group::{ElementOps, Ristretto},
        Keypair,
    };

    #[test]
    fn optimal_value_small() {
        let value = RangeDecomposition::optimal(5);
        assert_eq!(value.rings.as_ref(), [RingSpec { size: 5, step: 1 }]);

        let value = RangeDecomposition::optimal(16);
        assert_eq!(
            value.rings.as_ref(),
            [RingSpec { size: 4, step: 4 }, RingSpec { size: 4, step: 1 }]
        );

        let value = RangeDecomposition::optimal(60);
        assert_eq!(
            value.rings.as_ref(),
            [
                RingSpec { size: 5, step: 12 },
                RingSpec { size: 4, step: 3 },
                RingSpec { size: 3, step: 1 },
            ]
        );

        let value = RangeDecomposition::optimal(1_000);
        assert_eq!(
            value.to_string(),
            "125 * 0..8 + 25 * 0..5 + 5 * 0..5 + 0..5"
        );
    }

    #[test]
    fn optimal_values_with_additives() {
        let value = RangeDecomposition::optimal(17);
        assert_eq!(
            value.rings.as_ref(),
            [RingSpec { size: 4, step: 4 }, RingSpec { size: 5, step: 1 }]
        );

        let value = RangeDecomposition::optimal(101);
        assert_eq!(
            value.rings.as_ref(),
            [
                RingSpec { size: 5, step: 20 },
                RingSpec { size: 5, step: 4 },
                RingSpec { size: 5, step: 1 }
            ]
        );
    }

    #[test]
    fn large_optimal_values() {
        let value = RangeDecomposition::optimal(12_345);
        assert_eq!(
            value.to_string(),
            "2880 * 0..4 + 720 * 0..5 + 90 * 0..9 + 15 * 0..7 + 3 * 0..5 + 0..3"
        );
        assert_eq!(value.upper_bound(), 12_345);

        let value = RangeDecomposition::optimal(777_777);
        assert_eq!(
            value.to_string(),
            "125440 * 0..6 + 25088 * 0..6 + 3136 * 0..8 + 784 * 0..4 + 196 * 0..4 + \
             49 * 0..5 + 7 * 0..7 + 0..7"
        );
        assert_eq!(value.upper_bound(), 777_777);

        let value = RangeDecomposition::optimal(12_345_678);
        assert_eq!(
            value.to_string(),
            "3072000 * 0..4 + 768000 * 0..4 + 192000 * 0..4 + 48000 * 0..5 + 9600 * 0..6 + \
             1200 * 0..8 + 300 * 0..4 + 75 * 0..5 + 15 * 0..5 + 3 * 0..6 + 0..3"
        );
        assert_eq!(value.upper_bound(), 12_345_678);
    }

    #[test_casing(4, [1_000, 9_999, 12_345, 54_321])]
    fn decomposing_for_larger_range(upper_bound: u64) {
        let decomposition = RangeDecomposition::optimal(upper_bound);
        let mut rng = thread_rng();

        let values = (0..1_000)
            .map(|_| rng.gen_range(0..upper_bound))
            .chain(0..5)
            .chain((upper_bound - 5)..upper_bound);

        for secret_value in values {
            let mut value_indexes = vec![];
            decomposition.decompose(&mut value_indexes, secret_value);

            let restored = value_indexes
                .iter()
                .zip(&decomposition.rings)
                .fold(0, |acc, (&idx, spec)| acc + idx as u64 * spec.step);
            assert_eq!(
                restored, secret_value,
                "Cannot restore secret value {secret_value}; decomposed as {value_indexes:?}"
            );
        }
    }

    #[test]
    fn decomposing_for_small_range() {
        let decomposition = RangeDecomposition::optimal(17);
        assert_eq!(decomposition.to_string(), "4 * 0..4 + 0..5");
        let mut value_indexes = vec![];
        decomposition.decompose(&mut value_indexes, 16);
        assert_eq!(value_indexes, [3, 4]);
        // 3 * 4 + 4 = 16
    }

    #[test]
    fn decomposing_for_range() {
        let decomposition = RangeDecomposition::optimal(1_000);
        let mut value_indexes = vec![];
        decomposition.decompose(&mut value_indexes, 567);
        assert_eq!(value_indexes, [4, 2, 3, 2]);
        // 2 + 3 * 5 + 2 * 25 + 4 * 125 = 567
    }

    #[test_casing(4, [12, 15, 20, 50])]
    fn range_proof_basics(upper_bound: u64) {
        let decomposition = RangeDecomposition::optimal(upper_bound).into();

        let mut rng = thread_rng();
        let receiver = Keypair::<Ristretto>::generate(&mut rng);
        let (ciphertext, proof) = RangeProof::new(
            receiver.public(),
            &decomposition,
            10,
            &mut Transcript::new(b"test"),
            &mut rng,
        );
        let ciphertext = ciphertext.into();

        proof
            .verify(
                receiver.public(),
                &decomposition,
                ciphertext,
                &mut Transcript::new(b"test"),
            )
            .unwrap();

        // Should not verify with another transcript context
        assert!(proof
            .verify(
                receiver.public(),
                &decomposition,
                ciphertext,
                &mut Transcript::new(b"other"),
            )
            .is_err());

        // ...or with another receiver
        let other_receiver = Keypair::<Ristretto>::generate(&mut rng);
        assert!(proof
            .verify(
                other_receiver.public(),
                &decomposition,
                ciphertext,
                &mut Transcript::new(b"test"),
            )
            .is_err());

        // ...or with another ciphertext
        let other_ciphertext = receiver.public().encrypt(10_u64, &mut rng);
        assert!(proof
            .verify(
                receiver.public(),
                &decomposition,
                other_ciphertext,
                &mut Transcript::new(b"test"),
            )
            .is_err());

        let mut mangled_ciphertext = ciphertext;
        mangled_ciphertext.blinded_element += Ristretto::generator();
        assert!(proof
            .verify(
                receiver.public(),
                &decomposition,
                mangled_ciphertext,
                &mut Transcript::new(b"test"),
            )
            .is_err());

        // ...or with another decomposition
        let other_decomposition = RangeDecomposition::just(15).into();
        assert!(proof
            .verify(
                receiver.public(),
                &other_decomposition,
                ciphertext,
                &mut Transcript::new(b"test"),
            )
            .is_err());
    }

    #[test]
    #[cfg(feature = "std")]
    fn int_lower_len_estimate_is_always_not_more_than_exact() {
        let samples = (0..1_000).chain((1..1_000).map(|i| i * 1_000));
        for sample in samples {
            let floating_point_estimate = RangeDecomposition::lower_len_estimate(sample);
            let int_estimate = RangeDecomposition::int_lower_len_estimate(sample);
            assert!(
                floating_point_estimate >= int_estimate,
                "Unexpected estimates for {sample}: floating-point = {floating_point_estimate}, \
                 int = {int_estimate}"
            );
        }
    }
}