elastic_elgamal/sharing/
participant.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
//! Types representing participant state.

// TODO: Use a publicly verifiable scheme, e.g. Schoenmakers?
// https://www.win.tue.nl/~berry/papers/crypto99.pdf

use merlin::Transcript;
use rand_core::{CryptoRng, RngCore};
#[cfg(feature = "serde")]
use serde::{Deserialize, Serialize};

use core::iter;

use crate::{
    alloc::Vec,
    group::Group,
    proofs::{LogEqualityProof, ProofOfPossession},
    sharing::{Error, Params, PublicKeySet},
    Ciphertext, Keypair, PublicKey, SecretKey, VerifiableDecryption,
};

/// Dealer in a [Feldman verifiable secret sharing][feldman-vss] scheme.
///
/// [feldman-vss]: https://www.cs.umd.edu/~gasarch/TOPICS/secretsharing/feldmanVSS.pdf
#[derive(Debug, Clone)]
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
#[cfg_attr(feature = "serde", serde(bound = ""))]
pub struct Dealer<G: Group> {
    params: Params,
    polynomial: Vec<Keypair<G>>,
    proof_of_possession: ProofOfPossession<G>,
}

impl<G: Group> Dealer<G> {
    /// Instantiates a dealer.
    pub fn new<R: CryptoRng + RngCore>(params: Params, rng: &mut R) -> Self {
        let polynomial: Vec<_> = (0..params.threshold)
            .map(|_| Keypair::<G>::generate(rng))
            .collect();

        let mut transcript = Transcript::new(b"elgamal_share_poly");
        transcript.append_u64(b"n", params.shares as u64);
        transcript.append_u64(b"t", params.threshold as u64);

        let proof_of_possession = ProofOfPossession::new(&polynomial, &mut transcript, rng);

        Self {
            params,
            polynomial,
            proof_of_possession,
        }
    }

    /// Returns public participant information: dealer's public polynomial and proof
    /// of possession for the corresponding secret polynomial.
    pub fn public_info(&self) -> (Vec<G::Element>, &ProofOfPossession<G>) {
        let public_polynomial = self
            .polynomial
            .iter()
            .map(|pair| pair.public().as_element())
            .collect();
        (public_polynomial, &self.proof_of_possession)
    }

    /// Returns a secret share for a participant with the specified `index`.
    ///
    /// # Panics
    ///
    /// Panics if `index` is out of allowed bounds.
    pub fn secret_share_for_participant(&self, index: usize) -> SecretKey<G> {
        assert!(
            index < self.params.shares,
            "participant index {index} out of bounds, expected a value in 0..{}",
            self.params.shares
        );

        let power = G::Scalar::from(index as u64 + 1);
        let mut poly_value = SecretKey::new(G::Scalar::from(0));
        for keypair in self.polynomial.iter().rev() {
            poly_value = poly_value * &power + keypair.secret().clone();
        }
        poly_value
    }
}

/// Personalized state of a participant of a threshold ElGamal encryption scheme
/// once the participant receives the secret share from the [`Dealer`].
/// At this point, the participant can produce [`VerifiableDecryption`]s.
#[derive(Debug, Clone)]
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
#[cfg_attr(feature = "serde", serde(bound = ""))]
pub struct ActiveParticipant<G: Group> {
    key_set: PublicKeySet<G>,
    index: usize,
    secret_share: SecretKey<G>,
}

impl<G: Group> ActiveParticipant<G> {
    /// Creates the participant state based on readily available components.
    ///
    /// # Errors
    ///
    /// Returns an error if `secret_share` does not correspond to the participant's public key share
    /// in `key_set`.
    ///
    /// # Panics
    ///
    /// Panics if `index` is greater or equal than the number of participants in `key_set`.
    pub fn new(
        key_set: PublicKeySet<G>,
        index: usize,
        secret_share: SecretKey<G>,
    ) -> Result<Self, Error> {
        let expected_element = key_set.participant_keys()[index].as_element();
        if G::mul_generator(secret_share.expose_scalar()) == expected_element {
            Ok(Self {
                key_set,
                index,
                secret_share,
            })
        } else {
            Err(Error::InvalidSecret)
        }
    }

    /// Returns the public key set for the threshold ElGamal encryption scheme this participant
    /// is a part of.
    pub fn key_set(&self) -> &PublicKeySet<G> {
        &self.key_set
    }

    /// Returns 0-based index of this participant.
    pub fn index(&self) -> usize {
        self.index
    }

    /// Returns share of the secret key for this participant. This is secret information that
    /// must not be shared.
    pub fn secret_share(&self) -> &SecretKey<G> {
        &self.secret_share
    }

    /// Returns share of the public key for this participant.
    pub fn public_key_share(&self) -> &PublicKey<G> {
        &self.key_set.participant_keys()[self.index]
    }

    /// Generates a [`ProofOfPossession`] of the participant's
    /// [`secret_share`](Self::secret_share()).
    pub fn proof_of_possession<R: CryptoRng + RngCore>(&self, rng: &mut R) -> ProofOfPossession<G> {
        let mut transcript = Transcript::new(b"elgamal_participant_pop");
        self.key_set.commit(&mut transcript);
        transcript.append_u64(b"i", self.index as u64);
        ProofOfPossession::from_keys(
            iter::once(&self.secret_share),
            iter::once(self.public_key_share()),
            &mut transcript,
            rng,
        )
    }

    /// Creates a [`VerifiableDecryption`] for the specified `ciphertext` together with a proof
    /// of its validity. `rng` is used to generate the proof.
    pub fn decrypt_share<R>(
        &self,
        ciphertext: Ciphertext<G>,
        rng: &mut R,
    ) -> (VerifiableDecryption<G>, LogEqualityProof<G>)
    where
        R: CryptoRng + RngCore,
    {
        let dh_element = ciphertext.random_element * self.secret_share.expose_scalar();
        let our_public_key = self.public_key_share().as_element();
        let mut transcript = Transcript::new(b"elgamal_decryption_share");
        self.key_set.commit(&mut transcript);
        transcript.append_u64(b"i", self.index as u64);

        let proof = LogEqualityProof::new(
            &PublicKey::from_element(ciphertext.random_element),
            &self.secret_share,
            (our_public_key, dh_element),
            &mut transcript,
            rng,
        );
        (VerifiableDecryption::from_element(dh_element), proof)
    }
}

#[cfg(test)]
mod tests {
    use rand::thread_rng;

    use super::*;
    use crate::{curve25519::scalar::Scalar as Scalar25519, group::Ristretto};

    #[test]
    fn shared_2_of_3_key() {
        let mut rng = thread_rng();
        let params = Params::new(3, 2);

        let dealer = Dealer::<Ristretto>::new(params, &mut rng);
        let (public_poly, public_poly_proof) = dealer.public_info();
        let key_set = PublicKeySet::new(params, public_poly, public_poly_proof).unwrap();

        let alice_share = dealer.secret_share_for_participant(0);
        let alice = ActiveParticipant::new(key_set.clone(), 0, alice_share).unwrap();
        let bob_share = dealer.secret_share_for_participant(1);
        let bob = ActiveParticipant::new(key_set.clone(), 1, bob_share).unwrap();
        let carol_share = dealer.secret_share_for_participant(2);
        let carol = ActiveParticipant::new(key_set.clone(), 2, carol_share).unwrap();

        key_set
            .verify_participant(0, &alice.proof_of_possession(&mut rng))
            .unwrap();
        key_set
            .verify_participant(1, &bob.proof_of_possession(&mut rng))
            .unwrap();
        key_set
            .verify_participant(2, &carol.proof_of_possession(&mut rng))
            .unwrap();
        assert!(key_set
            .verify_participant(1, &alice.proof_of_possession(&mut rng))
            .is_err());

        let ciphertext = key_set.shared_key().encrypt(15_u64, &mut rng);
        let (alice_share, proof) = alice.decrypt_share(ciphertext, &mut rng);
        key_set
            .verify_share(alice_share.into(), ciphertext, 0, &proof)
            .unwrap();

        let (bob_share, proof) = bob.decrypt_share(ciphertext, &mut rng);
        key_set
            .verify_share(bob_share.into(), ciphertext, 1, &proof)
            .unwrap();

        // We need to find `a0` from the following equations:
        // a0 +   a1 = alice_share.dh_element;
        // a0 + 2*a1 = bob_share.dh_element;
        let composite_dh_element =
            *alice_share.as_element() * Scalar25519::from(2_u64) - *bob_share.as_element();
        let message = Ristretto::mul_generator(&Scalar25519::from(15_u64));
        assert_eq!(composite_dh_element, ciphertext.blinded_element - message);
    }
}