hex_buffer_serde/const_len.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297
//! Fixed-length hex (de)serialization.
use serde::{
de::{Error as DeError, Unexpected, Visitor},
Deserializer, Serializer,
};
use core::{array::TryFromSliceError, convert::TryFrom, fmt, marker::PhantomData, mem, slice, str};
/// Analogue of [`Hex`](crate::Hex) for values that have constant-length byte presentation.
/// This allows to avoid dependency on the `alloc` crate and expresses the byte length constraint
/// via types.
///
/// # Examples
///
/// ```
/// use hex_buffer_serde::{ConstHex, ConstHexForm};
/// # use serde_derive::{Deserialize, Serialize};
///
/// #[derive(Serialize, Deserialize)]
/// struct Simple {
/// #[serde(with = "ConstHexForm")]
/// array: [u8; 16],
/// // `array` will be serialized as 32-char hex string
/// }
/// ```
///
/// Similarly to `Hex`, it is possible to define proxies implementing `ConstHex` for external
/// types, for example, keys from [`ed25519-dalek`](https://crates.io/crates/ed25519-dalek):
///
/// ```
/// use ed25519::{PublicKey, SecretKey};
/// use hex_buffer_serde::ConstHex;
/// # use serde_derive::{Deserialize, Serialize};
///
/// struct KeyHex(());
///
/// impl ConstHex<PublicKey, 32> for KeyHex {
/// type Error = ed25519::SignatureError;
///
/// fn create_bytes(pk: &PublicKey) -> [u8; 32] {
/// pk.to_bytes()
/// }
///
/// fn from_bytes(bytes: [u8; 32]) -> Result<PublicKey, Self::Error> {
/// PublicKey::from_bytes(&bytes)
/// // although `bytes` always has correct length, not all
/// // 32-byte sequences are valid Ed25519 public keys.
/// }
/// }
///
/// impl ConstHex<SecretKey, 32> for KeyHex {
/// type Error = core::convert::Infallible;
///
/// fn create_bytes(sk: &SecretKey) -> [u8; 32] {
/// sk.to_bytes()
/// }
///
/// fn from_bytes(bytes: [u8; 32]) -> Result<SecretKey, Self::Error> {
/// Ok(SecretKey::from_bytes(&bytes).unwrap())
/// // ^ unwrap() is safe; any 32-byte sequence is a valid
/// // Ed25519 secret key.
/// }
/// }
///
/// #[derive(Serialize, Deserialize)]
/// struct KeyPair {
/// #[serde(with = "KeyHex")]
/// public: PublicKey,
/// #[serde(with = "KeyHex")]
/// secret: SecretKey,
/// }
/// ```
#[cfg_attr(docsrs, doc(cfg(feature = "const_len")))]
pub trait ConstHex<T, const N: usize> {
/// Error returned on unsuccessful deserialization.
type Error: fmt::Display;
/// Converts the value into bytes. This is used for serialization.
fn create_bytes(value: &T) -> [u8; N];
/// Creates a value from the byte slice.
///
/// # Errors
///
/// If this method fails, it should return a human-readable error description conforming
/// to `serde` conventions (no upper-casing of the first letter, no punctuation at the end).
fn from_bytes(bytes: [u8; N]) -> Result<T, Self::Error>;
/// Serializes the value for `serde`. This method is not meant to be overridden.
///
/// The serialization is a lower-case hex string
/// for [human-readable][hr] serializers (e.g., JSON or TOML), and the original bytes
/// returned by [`Self::create_bytes()`] for non-human-readable ones.
///
/// [hr]: serde::Serializer::is_human_readable()
fn serialize<S: Serializer>(value: &T, serializer: S) -> Result<S::Ok, S::Error> {
// Transmutes a `u16` slice as a `u8` one. This is needed because it's currently
// impossible to declare a buffer as `[u8; N * 2]`.
fn as_u8_slice(slice: &mut [u16]) -> &mut [u8] {
if slice.is_empty() {
// Empty slices need special handling since `from_raw_parts_mut` doesn't accept
// an empty pointer.
&mut []
} else {
let byte_len = mem::size_of_val(slice);
let data = (slice as *mut [u16]).cast::<u8>();
unsafe {
// SAFETY: length is trivially correct, and `[u8]` does not require
// additional alignment compared to `[u16]`.
slice::from_raw_parts_mut(data, byte_len)
}
}
}
let value = Self::create_bytes(value);
if serializer.is_human_readable() {
let mut hex_slice = [0_u16; N];
let hex_slice = as_u8_slice(&mut hex_slice);
hex::encode_to_slice(value, hex_slice).unwrap();
// ^ `unwrap` is safe: the length is statically correct.
serializer.serialize_str(unsafe {
// SAFETY: hex output is always valid UTF-8.
str::from_utf8_unchecked(hex_slice)
})
} else {
serializer.serialize_bytes(value.as_ref())
}
}
/// Deserializes a value using `serde`. This method is not meant to be overridden.
///
/// If the deserializer is [human-readable][hr] (e.g., JSON or TOML), this method
/// expects a hex-encoded string. Otherwise, the method expects a byte array.
///
/// [hr]: serde::Serializer::is_human_readable()
fn deserialize<'de, D>(deserializer: D) -> Result<T, D::Error>
where
D: Deserializer<'de>,
{
struct HexVisitor<const M: usize>;
impl<'de, const M: usize> Visitor<'de> for HexVisitor<M> {
type Value = [u8; M];
fn expecting(&self, formatter: &mut fmt::Formatter<'_>) -> fmt::Result {
write!(formatter, "hex-encoded byte array of length {M}")
}
fn visit_str<E: DeError>(self, value: &str) -> Result<Self::Value, E> {
let mut decoded = [0_u8; M];
hex::decode_to_slice(value, &mut decoded)
.map_err(|_| E::invalid_type(Unexpected::Str(value), &self))?;
Ok(decoded)
}
fn visit_bytes<E: DeError>(self, value: &[u8]) -> Result<Self::Value, E> {
<[u8; M]>::try_from(value).map_err(|_| E::invalid_length(value.len(), &self))
}
}
struct BytesVisitor<const M: usize>;
impl<'de, const M: usize> Visitor<'de> for BytesVisitor<M> {
type Value = [u8; M];
fn expecting(&self, formatter: &mut fmt::Formatter<'_>) -> fmt::Result {
write!(formatter, "byte array of length {M}")
}
fn visit_bytes<E: DeError>(self, value: &[u8]) -> Result<Self::Value, E> {
<[u8; M]>::try_from(value).map_err(|_| E::invalid_length(value.len(), &self))
}
}
let maybe_bytes = if deserializer.is_human_readable() {
deserializer.deserialize_str(HexVisitor)
} else {
deserializer.deserialize_bytes(BytesVisitor)
};
maybe_bytes.and_then(|bytes| Self::from_bytes(bytes).map_err(D::Error::custom))
}
}
/// A dummy container for use inside `#[serde(with)]` attribute if the underlying type
/// implements [`ConstHex`].
#[cfg_attr(docsrs, doc(cfg(feature = "const_len")))]
#[derive(Debug)]
pub struct ConstHexForm<T>(PhantomData<T>);
impl<const N: usize> ConstHex<[u8; N], N> for ConstHexForm<[u8; N]> {
type Error = TryFromSliceError;
fn create_bytes(buffer: &[u8; N]) -> [u8; N] {
*buffer
}
fn from_bytes(bytes: [u8; N]) -> Result<[u8; N], Self::Error> {
Ok(bytes)
}
}
#[cfg(test)]
mod tests {
use super::*;
use alloc::string::ToString;
use serde_derive::{Deserialize, Serialize};
#[derive(Debug, PartialEq, Serialize, Deserialize)]
struct Arrays {
#[serde(with = "ConstHexForm")]
array: [u8; 16],
#[serde(with = "ConstHexForm")]
longer_array: [u8; 32],
}
#[test]
fn serializing_arrays() {
let arrays = Arrays {
array: [11; 16],
longer_array: [240; 32],
};
let json = serde_json::to_string(&arrays).unwrap();
assert!(json.contains(&"0b".repeat(16)));
let arrays_copy: Arrays = serde_json::from_str(&json).unwrap();
assert_eq!(arrays_copy, arrays);
}
#[test]
fn deserializing_array_with_incorrect_length() {
let json = serde_json::json!({
"array": "0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b",
"longer_array": "0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b",
});
let err = serde_json::from_value::<Arrays>(json)
.unwrap_err()
.to_string();
assert!(err.contains("invalid type"), "{}", err);
assert!(err.contains("expected hex-encoded byte array"), "{}", err);
}
#[test]
fn deserializing_array_with_incorrect_length_from_binary_format() {
#[derive(Debug, Serialize, Deserialize)]
struct ArrayHolder<const N: usize>(#[serde(with = "ConstHexForm")] [u8; N]);
let buffer = bincode::serialize(&ArrayHolder([5; 6])).unwrap();
let err = bincode::deserialize::<ArrayHolder<4>>(&buffer).unwrap_err();
assert_eq!(
err.to_string(),
"invalid length 6, expected byte array of length 4"
);
}
#[test]
fn custom_type() {
use ed25519_compact::PublicKey;
struct PublicKeyHex(());
impl ConstHex<PublicKey, 32> for PublicKeyHex {
type Error = ed25519_compact::Error;
fn create_bytes(pk: &PublicKey) -> [u8; 32] {
**pk
}
fn from_bytes(bytes: [u8; 32]) -> Result<PublicKey, Self::Error> {
PublicKey::from_slice(&bytes)
}
}
#[derive(Debug, Serialize, Deserialize)]
struct Holder {
#[serde(with = "PublicKeyHex")]
public_key: PublicKey,
}
let json = serde_json::json!({
"public_key": "06fac1f22240cffd637ead6647188429fafda9c9cb7eae43386ac17f61115075",
});
let holder: Holder = serde_json::from_value(json).unwrap();
assert_eq!(holder.public_key[0], 6);
let bogus_json = serde_json::json!({
"public_key": "06fac1f22240cffd637ead6647188429fafda9c9cb7eae43386ac17f6111507",
});
let err = serde_json::from_value::<Holder>(bogus_json).unwrap_err();
assert!(err
.to_string()
.contains("expected hex-encoded byte array of length 32"));
}
}