hex_buffer_serde/var_len.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340
//! Types dependent on the `alloc` crate.
use serde::{
de::{Error as DeError, Unexpected, Visitor},
Deserializer, Serializer,
};
use alloc::{borrow::Cow, vec::Vec};
use core::{convert::TryFrom, fmt, marker::PhantomData};
/// Provides hex-encoded (de)serialization for `serde`.
///
/// Note that the trait is automatically implemented for types that
/// implement [`AsRef`]`<[u8]>` and [`TryFrom`]`<&[u8]>`.
///
/// # Examples
///
/// See [the crate-level docs](index.html#examples) for the examples of usage.
#[cfg_attr(docsrs, doc(cfg(feature = "alloc")))]
pub trait Hex<T> {
/// Error returned on unsuccessful deserialization.
type Error: fmt::Display;
/// Converts the value into bytes. This is used for serialization.
///
/// The returned buffer can be either borrowed from the type, or created by the method.
fn create_bytes(value: &T) -> Cow<'_, [u8]>;
/// Creates a value from the byte slice.
///
/// # Errors
///
/// If this method fails, it should return a human-readable error description conforming
/// to `serde` conventions (no upper-casing of the first letter, no punctuation at the end).
fn from_bytes(bytes: &[u8]) -> Result<T, Self::Error>;
/// Serializes the value for `serde`. This method is not meant to be overridden.
///
/// The serialization is a lower-case hex string
/// for [human-readable][hr] serializers (e.g., JSON or TOML), and the original bytes
/// returned by [`Self::create_bytes()`] for non-human-readable ones.
///
/// [hr]: serde::Serializer::is_human_readable()
/// [`create_bytes`]: #tymethod.create_bytes
fn serialize<S: Serializer>(value: &T, serializer: S) -> Result<S::Ok, S::Error> {
let value = Self::create_bytes(value);
if serializer.is_human_readable() {
serializer.serialize_str(&hex::encode(value))
} else {
serializer.serialize_bytes(value.as_ref())
}
}
/// Deserializes a value using `serde`. This method is not meant to be overridden.
///
/// If the deserializer is [human-readable][hr] (e.g., JSON or TOML), this method
/// expects a hex-encoded string. Otherwise, the method expects a byte array.
///
/// [hr]: serde::Serializer::is_human_readable()
fn deserialize<'de, D>(deserializer: D) -> Result<T, D::Error>
where
D: Deserializer<'de>,
{
struct HexVisitor;
impl<'de> Visitor<'de> for HexVisitor {
type Value = Vec<u8>;
fn expecting(&self, formatter: &mut fmt::Formatter<'_>) -> fmt::Result {
formatter.write_str("hex-encoded byte array")
}
fn visit_str<E: DeError>(self, value: &str) -> Result<Self::Value, E> {
hex::decode(value).map_err(|_| E::invalid_type(Unexpected::Str(value), &self))
}
// See the `deserializing_flattened_field` test for an example why this is needed.
fn visit_bytes<E: DeError>(self, value: &[u8]) -> Result<Self::Value, E> {
Ok(value.to_vec())
}
}
struct BytesVisitor;
impl<'de> Visitor<'de> for BytesVisitor {
type Value = Vec<u8>;
fn expecting(&self, formatter: &mut fmt::Formatter<'_>) -> fmt::Result {
formatter.write_str("byte array")
}
fn visit_bytes<E: DeError>(self, value: &[u8]) -> Result<Self::Value, E> {
Ok(value.to_vec())
}
fn visit_byte_buf<E: DeError>(self, value: Vec<u8>) -> Result<Self::Value, E> {
Ok(value)
}
}
let maybe_bytes = if deserializer.is_human_readable() {
deserializer.deserialize_str(HexVisitor)
} else {
deserializer.deserialize_byte_buf(BytesVisitor)
};
maybe_bytes.and_then(|bytes| Self::from_bytes(&bytes).map_err(D::Error::custom))
}
}
/// A dummy container for use inside `#[serde(with)]` attribute if the underlying type
/// implements [`Hex`].
///
/// # Why a separate container?
///
/// We need a separate type (instead of just using `impl<T> Hex<T> for T`)
/// both for code clarity and because otherwise invocations within generated `serde` code
/// would be ambiguous for types implementing `Serialize` / `Deserialize`.
#[cfg_attr(docsrs, doc(cfg(feature = "alloc")))]
#[derive(Debug)]
pub struct HexForm<T>(PhantomData<T>);
impl<T, E> Hex<T> for HexForm<T>
where
T: AsRef<[u8]> + for<'a> TryFrom<&'a [u8], Error = E>,
E: fmt::Display,
{
type Error = E;
fn create_bytes(buffer: &T) -> Cow<'_, [u8]> {
Cow::Borrowed(buffer.as_ref())
}
fn from_bytes(bytes: &[u8]) -> Result<T, Self::Error> {
T::try_from(bytes)
}
}
#[cfg(test)]
mod tests {
use super::*;
use serde_derive::{Deserialize, Serialize};
use serde_json::json;
use alloc::{
borrow::ToOwned,
string::{String, ToString},
vec,
};
use core::array::TryFromSliceError;
#[derive(Debug, Serialize, Deserialize)]
struct Buffer([u8; 8]);
impl AsRef<[u8]> for Buffer {
fn as_ref(&self) -> &[u8] {
&self.0
}
}
impl TryFrom<&[u8]> for Buffer {
type Error = TryFromSliceError;
fn try_from(slice: &[u8]) -> Result<Self, Self::Error> {
<[u8; 8]>::try_from(slice).map(Buffer)
}
}
#[derive(Debug, Serialize, Deserialize)]
struct Test {
#[serde(with = "HexForm::<Buffer>")]
buffer: Buffer,
other_field: String,
}
#[test]
fn internal_type() {
let json = json!({ "buffer": "0001020304050607", "other_field": "abc" });
let value: Test = serde_json::from_value(json.clone()).unwrap();
assert!(value
.buffer
.0
.iter()
.enumerate()
.all(|(i, &byte)| i == usize::from(byte)));
let json_copy = serde_json::to_value(&value).unwrap();
assert_eq!(json, json_copy);
}
#[test]
fn error_reporting() {
let bogus_jsons = vec![
serde_json::json!({
"buffer": "bogus",
"other_field": "test",
}),
serde_json::json!({
"buffer": "c0ffe",
"other_field": "test",
}),
];
for bogus_json in bogus_jsons {
let err = serde_json::from_value::<Test>(bogus_json)
.unwrap_err()
.to_string();
assert!(err.contains("expected hex-encoded byte array"), "{}", err);
}
}
#[test]
fn internal_type_with_derived_serde_code() {
// ...and here, we may use original `serde` code.
#[derive(Serialize, Deserialize)]
struct OriginalTest {
buffer: Buffer,
other_field: String,
}
let test = Test {
buffer: Buffer([1; 8]),
other_field: "a".to_owned(),
};
assert_eq!(
serde_json::to_value(test).unwrap(),
json!({
"buffer": "0101010101010101",
"other_field": "a",
})
);
let test = OriginalTest {
buffer: Buffer([1; 8]),
other_field: "a".to_owned(),
};
assert_eq!(
serde_json::to_value(test).unwrap(),
json!({
"buffer": [1, 1, 1, 1, 1, 1, 1, 1],
"other_field": "a",
})
);
}
#[test]
fn external_type() {
#[derive(Debug, PartialEq, Eq)]
pub struct Buffer([u8; 8]);
struct BufferHex(());
impl Hex<Buffer> for BufferHex {
type Error = &'static str;
fn create_bytes(buffer: &Buffer) -> Cow<'_, [u8]> {
Cow::Borrowed(&buffer.0)
}
fn from_bytes(bytes: &[u8]) -> Result<Buffer, Self::Error> {
if bytes.len() == 8 {
let mut inner = [0; 8];
inner.copy_from_slice(bytes);
Ok(Buffer(inner))
} else {
Err("invalid buffer length")
}
}
}
#[derive(Debug, PartialEq, Eq, Serialize, Deserialize)]
struct Test {
#[serde(with = "BufferHex")]
buffer: Buffer,
other_field: String,
}
let json = json!({ "buffer": "0001020304050607", "other_field": "abc" });
let value: Test = serde_json::from_value(json.clone()).unwrap();
assert!(value
.buffer
.0
.iter()
.enumerate()
.all(|(i, &byte)| i == usize::from(byte)));
let json_copy = serde_json::to_value(&value).unwrap();
assert_eq!(json, json_copy);
// Test binary / non-human readable format.
let buffer = bincode::serialize(&value).unwrap();
// Conversion to hex is needed to be able to search for a pattern.
let buffer_hex = hex::encode(&buffer);
// Check that the buffer is stored in the serialization compactly,
// as original bytes.
let needle = "0001020304050607";
assert!(buffer_hex.contains(needle));
let value_copy: Test = bincode::deserialize(&buffer).unwrap();
assert_eq!(value_copy, value);
}
#[test]
fn deserializing_flattened_field() {
// The fields in the flattened structure are somehow read with
// a human-readable `Deserializer`, even if the original `Deserializer`
// is not human-readable.
#[derive(Debug, PartialEq, Serialize, Deserialize)]
struct Inner {
#[serde(with = "HexForm")]
x: Vec<u8>,
#[serde(with = "HexForm")]
y: [u8; 16],
}
#[derive(Debug, PartialEq, Serialize, Deserialize)]
struct Outer {
#[serde(flatten)]
inner: Inner,
z: String,
}
let value = Outer {
inner: Inner {
x: vec![1; 8],
y: [0; 16],
},
z: "test".to_owned(),
};
let mut bytes = vec![];
ciborium::into_writer(&value, &mut bytes).unwrap();
let bytes_hex = hex::encode(&bytes);
// Check that byte buffers are stored in the binary form.
assert!(bytes_hex.contains(&"01".repeat(8)));
assert!(bytes_hex.contains(&"00".repeat(16)));
let value_copy = ciborium::from_reader(&bytes[..]).unwrap();
assert_eq!(value, value_copy);
}
}