1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266
//! [Julia set] boundary computation and rendering.
//!
//! # Theory
//!
//! Informally, the Julia set for a complex-valued function `f` (in Rust terms,
//! `fn(Complex32) -> Complex32`) is a set of complex points for which an infinitely small
//! perturbation can lead to drastic changes in the sequence of iterated function applications
//! (that is, `f(z)`, `f(f(z))`, `f(f(f(z)))` and so on).
//!
//! For many functions `f`, the iterated sequence may tend to infinity. Hence, the
//! commonly used computational way to render the Julia set boundary is as follows:
//!
//! 1. For each complex value `z` within a rectangular area, perform steps 2-3.
//! 2. Compute the minimum iteration `0 < i <= MAX_I` such that `|f(f(f(...(z)))| > R`.
//! Here, `f` is applied `i` times; `R` is a positive real-valued constant
//! (the *infinity distance*); `MAX_I` is a positive integer constant (maximum iteration count).
//! 3. Associate `z` with a color depending on `i`. For example, `i == 1` may be rendered as black,
//! `i == MAX_I` as white, and values between it may get the corresponding shades of gray.
//! 4. Render the rectangular area as a (two-dimensional) image, with each pixel corresponding
//! to a separate value of `z`.
//!
//! This is exactly the way Julia set rendering is implemented in this crate.
//!
//! [Julia set]: https://en.wikipedia.org/wiki/Julia_set
//!
//! # Backends
//!
//! The crate supports several computational [`Backend`]s.
//!
//! | Backend | Crate feature | Hardware | Crate dep(s) |
//! |---------|---------------|----------|------------|
//! | [`OpenCl`] | `opencl_backend` | GPU, CPU | [`ocl`] |
//! | [`Vulkan`] | `vulkan_backend` | GPU | [`vulkano`], [`shaderc`] |
//! | [`Cpu`] | `cpu_backend` | CPU | [`rayon`] |
//! | [`Cpu`] | `dyn_cpu_backend` | CPU | [`rayon`] |
//!
//! None of the backends are on by default. A backend can be enabled by switching
//! on the corresponding crate feature. `dyn_cpu_backend` requires `cpu_backend` internally.
//!
//! All backends except for `cpu_backend` require parsing the complex-valued [`Function`] from
//! a string presentation, e.g., `"z * z - 0.4i"`. The [`arithmetic-parser`] crate is used for this
//! purpose. For `cpu_backend`, the function is defined directly in Rust.
//!
//! For efficiency and modularity, a [`Backend`] creates a *program* for each function.
//! (In case of OpenCL, a program is a kernel, and in Vulkan a program is a compute shader.)
//! The program can then be [`Render`]ed with various [`Params`].
//!
//! Backends targeting GPUs (i.e., `OpenCl` and `Vulkan`) should be much faster than CPU-based
//! backends. Indeed, the rendering task is [embarrassingly parallel] (could be performed
//! independently for each point).
//!
//! [`ocl`]: https://crates.io/crates/ocl
//! [`vulkano`]: https://crates.io/crates/vulkano
//! [`shaderc`]: https://crates.io/crates/shaderc
//! [`rayon`]: https://crates.io/crates/rayon
//! [`arithmetic-parser`]: https://crates.io/crates/arithmetic-parser
//! [embarrassingly parallel]: https://en.wikipedia.org/wiki/Embarrassingly_parallel
//!
//! # Examples
//!
//! Using Rust function definition with `cpu_backend`:
//!
//! ```
//! use julia_set::{Backend, Cpu, Params, Render};
//! use num_complex::Complex32;
//!
//! # fn main() -> anyhow::Result<()> {
//! let program = Cpu.create_program(|z: Complex32| z * z + Complex32::new(-0.4, 0.5))?;
//! let render_params = Params::new([50, 50], 4.0).with_infinity_distance(5.0);
//! let image = program.render(&render_params)?;
//! // Do something with the image...
//! # Ok(())
//! # }
//! ```
//!
//! Using interpreted function definition with `dyn_cpu_backend`:
//!
//! ```
//! use julia_set::{Backend, Cpu, Function, Params, Render};
//! use num_complex::Complex32;
//!
//! # fn main() -> anyhow::Result<()> {
//! let function: Function = "z * z - 0.4 + 0.5i".parse()?;
//! let program = Cpu.create_program(&function)?;
//! let render_params = Params::new([50, 50], 4.0).with_infinity_distance(5.0);
//! let image = program.render(&render_params)?;
//! // Do something with the image...
//! # Ok(())
//! # }
//! ```
#![cfg_attr(docsrs, feature(doc_cfg))]
#![doc(html_root_url = "https://docs.rs/julia-set/0.1.0")]
#![warn(missing_docs, missing_debug_implementations, bare_trait_objects)]
#![warn(clippy::all, clippy::pedantic)]
#![allow(
clippy::missing_errors_doc,
clippy::must_use_candidate,
clippy::module_name_repetitions,
clippy::doc_markdown
)]
use std::fmt;
#[cfg(feature = "cpu_backend")]
pub use crate::cpu::{ComputePoint, Cpu, CpuProgram};
#[cfg(feature = "arithmetic-parser")]
pub use crate::function::{FnError, Function};
#[cfg(feature = "opencl_backend")]
pub use crate::opencl::{OpenCl, OpenClProgram};
#[cfg(feature = "vulkan_backend")]
pub use crate::vulkan::{Vulkan, VulkanProgram};
#[cfg(any(feature = "opencl_backend", feature = "vulkan_backend"))]
mod compiler;
#[cfg(feature = "cpu_backend")]
mod cpu;
#[cfg(feature = "arithmetic-parser")]
mod function;
#[cfg(feature = "opencl_backend")]
mod opencl;
pub mod transform;
#[cfg(feature = "vulkan_backend")]
mod vulkan;
/// Image buffer output by a [`Backend`].
pub type ImageBuffer = image::GrayImage;
/// Backend capable of converting an input (the type parameter) into a program. The program
/// then can be used to [`Render`] the Julia set with various rendering [`Params`].
pub trait Backend<In>: Default {
/// Error that may be returned during program creation.
type Error: fmt::Debug + fmt::Display;
/// Program output by the backend.
type Program: Render;
/// Creates a program.
///
/// # Errors
///
/// May return an error if program cannot be created (out of memory, etc.).
fn create_program(&self, function: In) -> Result<Self::Program, Self::Error>;
}
/// Program for a specific [`Backend`] (e.g., OpenCL) corresponding to a specific Julia set.
/// A single program can be rendered with different parameters (e.g., different output sizes),
/// but the core settings (e.g., the complex-valued function describing the set) are fixed.
pub trait Render {
/// Error that may be returned during rendering.
type Error: fmt::Debug + fmt::Display;
/// Renders the Julia set with the specified parameters.
///
/// The rendered image is grayscale; each pixel represents the number of iterations to reach
/// infinity [as per the Julia set boundary definition](index.html#theory). This number is
/// normalized to the `[0, 255]` range regardless of the maximum iteration count from `params`.
///
/// You can use the [`transform`] module and/or tools from the [`image`] / [`imageproc`] crates
/// to post-process the image.
///
/// [`image`]: https://crates.io/crates/image
/// [`imageproc`]: https://crates.io/crates/imageproc
///
/// # Errors
///
/// May return an error if the backend does not support rendering with the specified params
/// or due to external reasons (out of memory, etc.).
fn render(&self, params: &Params) -> Result<ImageBuffer, Self::Error>;
}
/// Julia set rendering parameters.
///
/// The parameters are:
///
/// - Image dimensions (in pixels)
/// - View dimensions and view center determining the rendered area. (Only the view height
/// is specified explicitly; the width is inferred from the height and the image dimension ratio.)
/// - Infinity distance
/// - Upper bound on the iteration count
///
/// See the [Julia set theory] for more details regarding these parameters.
///
/// [Julia set theory]: index.html#theory
#[derive(Debug, Clone)]
pub struct Params {
view_center: [f32; 2],
view_height: f32,
inf_distance: f32,
image_size: [u32; 2],
max_iterations: u8,
}
impl Params {
/// Creates a new set of params with the specified `image_dimensions` and the `view_height`
/// of the rendered area.
///
/// The remaining parameters are set as follows:
///
/// - The width of the rendered area is inferred from these params.
/// - The view is centered at `0`.
/// - The infinity distance is set at `3`.
///
/// # Panics
///
/// Panics if any of the following conditions do not hold:
///
/// - `image_dimensions` are positive
/// - `view_height` is positive
pub fn new(image_dimensions: [u32; 2], view_height: f32) -> Self {
assert!(image_dimensions[0] > 0);
assert!(image_dimensions[1] > 0);
assert!(view_height > 0.0, "`view_height` should be positive");
Self {
view_center: [0.0, 0.0],
view_height,
inf_distance: 3.0,
image_size: image_dimensions,
max_iterations: 100,
}
}
/// Sets the view center.
#[must_use]
pub fn with_view_center(mut self, view_center: [f32; 2]) -> Self {
self.view_center = view_center;
self
}
/// Sets the infinity distance.
///
/// # Panics
///
/// Panics if the provided distance is not positive.
#[must_use]
pub fn with_infinity_distance(mut self, inf_distance: f32) -> Self {
assert!(inf_distance > 0.0, "`inf_distance` should be positive");
self.inf_distance = inf_distance;
self
}
/// Sets the maximum iteration count.
///
/// # Panics
///
/// Panics if `max_iterations` is zero.
#[must_use]
pub fn with_max_iterations(mut self, max_iterations: u8) -> Self {
assert_ne!(max_iterations, 0, "Max iterations must be positive");
self.max_iterations = max_iterations;
self
}
#[cfg(any(
feature = "cpu_backend",
feature = "opencl_backend",
feature = "vulkan_backend"
))]
#[allow(clippy::cast_precision_loss)] // loss of precision is acceptable
pub(crate) fn view_width(&self) -> f32 {
self.view_height * (self.image_size[0] as f32) / (self.image_size[1] as f32)
}
}
#[cfg(doctest)]
doc_comment::doctest!("../README.md");