1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
//! `ES256K` algorithm implementation using the `secp256k1` crate.

use core::{marker::PhantomData, num::NonZeroUsize};

use lazy_static::lazy_static;
use secp256k1::{
    constants::{
        COMPACT_SIGNATURE_SIZE, FIELD_SIZE, SECRET_KEY_SIZE, UNCOMPRESSED_PUBLIC_KEY_SIZE,
    },
    ecdsa::Signature,
    All, Message, PublicKey, Secp256k1, SecretKey,
};
use sha2::{
    digest::{
        crypto_common::BlockSizeUser, generic_array::typenum::U32, FixedOutputReset, HashMarker,
    },
    Digest, Sha256,
};

use crate::{
    alg::{SecretBytes, SigningKey, VerifyingKey},
    alloc::Cow,
    jwk::{JsonWebKey, JwkError, KeyType},
    Algorithm, AlgorithmSignature,
};

/// Byte size of a serialized EC coordinate.
const COORDINATE_SIZE: usize = FIELD_SIZE.len();

impl AlgorithmSignature for Signature {
    const LENGTH: Option<NonZeroUsize> = NonZeroUsize::new(COMPACT_SIGNATURE_SIZE);

    fn try_from_slice(slice: &[u8]) -> anyhow::Result<Self> {
        Signature::from_compact(slice).map_err(Into::into)
    }

    fn as_bytes(&self) -> Cow<'_, [u8]> {
        Cow::Owned(self.serialize_compact()[..].to_vec())
    }
}

/// Algorithm implementing elliptic curve digital signatures (ECDSA) on the secp256k1 curve.
///
/// The algorithm does not fix the choice of the message digest algorithm; instead,
/// it is provided as a type parameter. SHA-256 is the default parameter value,
/// but it can be set to any cryptographically secure hash function with 32-byte output
/// (e.g., SHA3-256).
#[derive(Debug)]
#[cfg_attr(docsrs, doc(cfg(any(feature = "es256k", feature = "k256"))))]
pub struct Es256k<D = Sha256> {
    context: Secp256k1<All>,
    _digest: PhantomData<D>,
}

impl<D> Default for Es256k<D>
where
    D: FixedOutputReset<OutputSize = U32> + BlockSizeUser + Clone + Default + HashMarker,
{
    fn default() -> Self {
        Es256k {
            context: Secp256k1::new(),
            _digest: PhantomData,
        }
    }
}

impl<D> Es256k<D>
where
    D: FixedOutputReset<OutputSize = U32> + BlockSizeUser + Clone + Default + HashMarker,
{
    /// Creates a new algorithm instance.
    /// This is a (moderately) expensive operation, so if necessary, the algorithm should
    /// be `clone()`d rather than created anew.
    #[cfg_attr(docsrs, doc(cfg(feature = "es256k")))]
    pub fn new(context: Secp256k1<All>) -> Self {
        Es256k {
            context,
            _digest: PhantomData,
        }
    }
}

impl<D> Algorithm for Es256k<D>
where
    D: FixedOutputReset<OutputSize = U32> + BlockSizeUser + Clone + Default + HashMarker,
{
    type SigningKey = SecretKey;
    type VerifyingKey = PublicKey;
    type Signature = Signature;

    fn name(&self) -> Cow<'static, str> {
        Cow::Borrowed("ES256K")
    }

    fn sign(&self, signing_key: &Self::SigningKey, message: &[u8]) -> Self::Signature {
        let mut digest = D::default();
        digest.update(message);
        let message = Message::from_digest(digest.finalize().into());

        self.context.sign_ecdsa(&message, signing_key)
    }

    fn verify_signature(
        &self,
        signature: &Self::Signature,
        verifying_key: &Self::VerifyingKey,
        message: &[u8],
    ) -> bool {
        let mut digest = D::default();
        digest.update(message);
        let message = Message::from_digest(digest.finalize().into());

        // Some implementations (e.g., OpenSSL) produce high-S signatures, which
        // are considered invalid by this implementation. Hence, we perform normalization here.
        //
        // See also: https://github.com/bitcoin/bips/blob/master/bip-0062.mediawiki
        let mut normalized_signature = *signature;
        normalized_signature.normalize_s();

        self.context
            .verify_ecdsa(&message, &normalized_signature, verifying_key)
            .is_ok()
    }
}

/// This implementation initializes a `libsecp256k1` context once on the first call to
/// `to_verifying_key` if it was not initialized previously.
impl SigningKey<Es256k> for SecretKey {
    fn from_slice(raw: &[u8]) -> anyhow::Result<Self> {
        Self::from_slice(raw).map_err(From::from)
    }

    fn to_verifying_key(&self) -> PublicKey {
        lazy_static! {
            static ref CONTEXT: Secp256k1<All> = Secp256k1::new();
        }
        PublicKey::from_secret_key(&CONTEXT, self)
    }

    fn as_bytes(&self) -> SecretBytes<'_> {
        SecretBytes::borrowed(&self[..])
    }
}

impl VerifyingKey<Es256k> for PublicKey {
    fn from_slice(raw: &[u8]) -> anyhow::Result<Self> {
        Self::from_slice(raw).map_err(From::from)
    }

    /// Serializes the key as a 33-byte compressed form, as per [`Self::serialize()`].
    fn as_bytes(&self) -> Cow<'_, [u8]> {
        Cow::Owned(self.serialize().to_vec())
    }
}

fn create_jwk<'a>(pk: &PublicKey, sk: Option<&'a SecretKey>) -> JsonWebKey<'a> {
    let uncompressed = pk.serialize_uncompressed();
    JsonWebKey::EllipticCurve {
        curve: "secp256k1".into(),
        x: Cow::Owned(uncompressed[1..=COORDINATE_SIZE].to_vec()),
        y: Cow::Owned(uncompressed[(1 + COORDINATE_SIZE)..].to_vec()),
        secret: sk.map(|sk| SecretBytes::borrowed(&sk.as_ref()[..])),
    }
}

impl<'a> From<&'a PublicKey> for JsonWebKey<'a> {
    fn from(key: &'a PublicKey) -> JsonWebKey<'a> {
        create_jwk(key, None)
    }
}

impl TryFrom<&JsonWebKey<'_>> for PublicKey {
    type Error = JwkError;

    fn try_from(jwk: &JsonWebKey<'_>) -> Result<Self, Self::Error> {
        let JsonWebKey::EllipticCurve { curve, x, y, .. } = jwk else {
            return Err(JwkError::key_type(jwk, KeyType::EllipticCurve));
        };
        JsonWebKey::ensure_curve(curve, "secp256k1")?;
        JsonWebKey::ensure_len("x", x, COORDINATE_SIZE)?;
        JsonWebKey::ensure_len("y", y, COORDINATE_SIZE)?;

        let mut key_bytes = [0_u8; UNCOMPRESSED_PUBLIC_KEY_SIZE];
        key_bytes[0] = 4; // uncompressed key marker
        key_bytes[1..=COORDINATE_SIZE].copy_from_slice(x);
        key_bytes[(1 + COORDINATE_SIZE)..].copy_from_slice(y);
        PublicKey::from_slice(&key_bytes[..]).map_err(JwkError::custom)
    }
}

impl<'a> From<&'a SecretKey> for JsonWebKey<'a> {
    fn from(key: &'a SecretKey) -> JsonWebKey<'a> {
        create_jwk(&key.to_verifying_key(), Some(key))
    }
}

impl TryFrom<&JsonWebKey<'_>> for SecretKey {
    type Error = JwkError;

    fn try_from(jwk: &JsonWebKey<'_>) -> Result<Self, Self::Error> {
        let JsonWebKey::EllipticCurve { secret, .. } = jwk else {
            return Err(JwkError::key_type(jwk, KeyType::EllipticCurve));
        };
        let sk_bytes = secret.as_deref();
        let sk_bytes = sk_bytes.ok_or_else(|| JwkError::NoField("d".into()))?;
        JsonWebKey::ensure_len("d", sk_bytes, SECRET_KEY_SIZE)?;

        let sk = SecretKey::from_slice(sk_bytes).map_err(JwkError::custom)?;
        jwk.ensure_key_match(sk)
    }
}