1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
//! RSA-based JWT algorithms: `RS*` and `PS*`.

use core::{fmt, str::FromStr};

use rand_core::{CryptoRng, RngCore};
pub use rsa::{errors::Error as RsaError, RsaPrivateKey, RsaPublicKey};
use rsa::{
    traits::{PrivateKeyParts, PublicKeyParts},
    BigUint, Pkcs1v15Sign, Pss,
};
use sha2::{Digest, Sha256, Sha384, Sha512};

use crate::{
    alg::{SecretBytes, StrongKey, WeakKeyError},
    alloc::{Cow, String, ToOwned, Vec},
    jwk::{JsonWebKey, JwkError, KeyType, RsaPrimeFactor, RsaPrivateParts},
    Algorithm, AlgorithmSignature,
};

/// RSA signature.
#[derive(Debug)]
#[cfg_attr(docsrs, doc(cfg(feature = "rsa")))]
pub struct RsaSignature(Vec<u8>);

impl AlgorithmSignature for RsaSignature {
    fn try_from_slice(bytes: &[u8]) -> anyhow::Result<Self> {
        Ok(RsaSignature(bytes.to_vec()))
    }

    fn as_bytes(&self) -> Cow<'_, [u8]> {
        Cow::Borrowed(&self.0)
    }
}

/// RSA hash algorithm.
#[derive(Debug, Copy, Clone, Eq, PartialEq)]
enum HashAlg {
    Sha256,
    Sha384,
    Sha512,
}

impl HashAlg {
    fn digest(self, message: &[u8]) -> HashDigest {
        match self {
            Self::Sha256 => HashDigest::Sha256(Sha256::digest(message).into()),
            Self::Sha384 => HashDigest::Sha384(Sha384::digest(message).into()),
            Self::Sha512 => HashDigest::Sha512(Sha512::digest(message).into()),
        }
    }
}

/// Output of a [`HashAlg`].
#[derive(Debug)]
enum HashDigest {
    Sha256([u8; 32]),
    Sha384([u8; 48]),
    Sha512([u8; 64]),
}

impl AsRef<[u8]> for HashDigest {
    fn as_ref(&self) -> &[u8] {
        match self {
            Self::Sha256(bytes) => bytes,
            Self::Sha384(bytes) => bytes,
            Self::Sha512(bytes) => bytes,
        }
    }
}

/// RSA padding algorithm.
#[derive(Debug, Copy, Clone, Eq, PartialEq)]
enum Padding {
    Pkcs1v15,
    Pss,
}

#[derive(Debug)]
enum PaddingScheme {
    Pkcs1v15(Pkcs1v15Sign),
    Pss(Pss),
}

/// Bit length of an RSA key modulus (aka RSA key length).
#[derive(Debug, Copy, Clone, Eq, PartialEq)]
#[non_exhaustive]
#[cfg_attr(docsrs, doc(cfg(feature = "rsa")))]
pub enum ModulusBits {
    /// 2048 bits. This is the minimum recommended key length as of 2020.
    TwoKibibytes,
    /// 3072 bits.
    ThreeKibibytes,
    /// 4096 bits.
    FourKibibytes,
}

impl ModulusBits {
    /// Converts this length to the numeric value.
    pub fn bits(self) -> usize {
        match self {
            Self::TwoKibibytes => 2_048,
            Self::ThreeKibibytes => 3_072,
            Self::FourKibibytes => 4_096,
        }
    }

    fn is_valid_bits(bits: usize) -> bool {
        matches!(bits, 2_048 | 3_072 | 4_096)
    }
}

impl TryFrom<usize> for ModulusBits {
    type Error = ModulusBitsError;

    fn try_from(value: usize) -> Result<Self, Self::Error> {
        match value {
            2_048 => Ok(Self::TwoKibibytes),
            3_072 => Ok(Self::ThreeKibibytes),
            4_096 => Ok(Self::FourKibibytes),
            _ => Err(ModulusBitsError(())),
        }
    }
}

/// Error type returned when a conversion of an integer into `ModulusBits` fails.
#[derive(Debug)]
#[cfg_attr(docsrs, doc(cfg(feature = "rsa")))]
pub struct ModulusBitsError(());

impl fmt::Display for ModulusBitsError {
    fn fmt(&self, formatter: &mut fmt::Formatter<'_>) -> fmt::Result {
        formatter.write_str(
            "Unsupported bit length of RSA modulus; only lengths 2048, 3072 and 4096 \
            are supported.",
        )
    }
}

#[cfg(feature = "std")]
impl std::error::Error for ModulusBitsError {}

/// Integrity algorithm using [RSA] digital signatures.
///
/// Depending on the variation, the algorithm employs PKCS#1 v1.5 or PSS padding and
/// one of the hash functions from the SHA-2 family: SHA-256, SHA-384, or SHA-512.
/// See [RFC 7518] for more details. Depending on the chosen parameters,
/// the name of the algorithm is one of `RS256`, `RS384`, `RS512`, `PS256`, `PS384`, `PS512`:
///
/// - `R` / `P` denote the padding scheme: PKCS#1 v1.5 for `R`, PSS for `P`
/// - `256` / `384` / `512` denote the hash function
///
/// The length of RSA keys is not unequivocally specified by the algorithm; nevertheless,
/// it **MUST** be at least 2048 bits as per RFC 7518. To minimize risks of misconfiguration,
/// use [`StrongAlg`](super::StrongAlg) wrapper around `Rsa`:
///
/// ```
/// # use jwt_compact::alg::{StrongAlg, Rsa};
/// const ALG: StrongAlg<Rsa> = StrongAlg(Rsa::rs256());
/// // `ALG` will not support RSA keys with unsecure lengths by design!
/// ```
///
/// [RSA]: https://en.wikipedia.org/wiki/RSA_(cryptosystem)
/// [RFC 7518]: https://www.rfc-editor.org/rfc/rfc7518.html
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
#[cfg_attr(docsrs, doc(cfg(feature = "rsa")))]
pub struct Rsa {
    hash_alg: HashAlg,
    padding_alg: Padding,
}

impl Algorithm for Rsa {
    type SigningKey = RsaPrivateKey;
    type VerifyingKey = RsaPublicKey;
    type Signature = RsaSignature;

    fn name(&self) -> Cow<'static, str> {
        Cow::Borrowed(self.alg_name())
    }

    fn sign(&self, signing_key: &Self::SigningKey, message: &[u8]) -> Self::Signature {
        let digest = self.hash_alg.digest(message);
        let digest = digest.as_ref();
        let signing_result = match self.padding_scheme() {
            PaddingScheme::Pkcs1v15(padding) => {
                signing_key.sign_with_rng(&mut rand_core::OsRng, padding, digest)
            }
            PaddingScheme::Pss(padding) => {
                signing_key.sign_with_rng(&mut rand_core::OsRng, padding, digest)
            }
        };
        RsaSignature(signing_result.expect("Unexpected RSA signature failure"))
    }

    fn verify_signature(
        &self,
        signature: &Self::Signature,
        verifying_key: &Self::VerifyingKey,
        message: &[u8],
    ) -> bool {
        let digest = self.hash_alg.digest(message);
        let digest = digest.as_ref();
        let verify_result = match self.padding_scheme() {
            PaddingScheme::Pkcs1v15(padding) => verifying_key.verify(padding, digest, &signature.0),
            PaddingScheme::Pss(padding) => verifying_key.verify(padding, digest, &signature.0),
        };
        verify_result.is_ok()
    }
}

impl Rsa {
    const fn new(hash_alg: HashAlg, padding_alg: Padding) -> Self {
        Rsa {
            hash_alg,
            padding_alg,
        }
    }

    /// RSA with SHA-256 and PKCS#1 v1.5 padding.
    pub const fn rs256() -> Rsa {
        Rsa::new(HashAlg::Sha256, Padding::Pkcs1v15)
    }

    /// RSA with SHA-384 and PKCS#1 v1.5 padding.
    pub const fn rs384() -> Rsa {
        Rsa::new(HashAlg::Sha384, Padding::Pkcs1v15)
    }

    /// RSA with SHA-512 and PKCS#1 v1.5 padding.
    pub const fn rs512() -> Rsa {
        Rsa::new(HashAlg::Sha512, Padding::Pkcs1v15)
    }

    /// RSA with SHA-256 and PSS padding.
    pub const fn ps256() -> Rsa {
        Rsa::new(HashAlg::Sha256, Padding::Pss)
    }

    /// RSA with SHA-384 and PSS padding.
    pub const fn ps384() -> Rsa {
        Rsa::new(HashAlg::Sha384, Padding::Pss)
    }

    /// RSA with SHA-512 and PSS padding.
    pub const fn ps512() -> Rsa {
        Rsa::new(HashAlg::Sha512, Padding::Pss)
    }

    /// RSA based on the specified algorithm name.
    ///
    /// # Panics
    ///
    /// - Panics if the name is not one of the six RSA-based JWS algorithms. Prefer using
    ///   the [`FromStr`] trait if the conversion is potentially fallible.
    pub fn with_name(name: &str) -> Self {
        name.parse().unwrap()
    }

    fn padding_scheme(self) -> PaddingScheme {
        match self.padding_alg {
            Padding::Pkcs1v15 => PaddingScheme::Pkcs1v15(match self.hash_alg {
                HashAlg::Sha256 => Pkcs1v15Sign::new::<Sha256>(),
                HashAlg::Sha384 => Pkcs1v15Sign::new::<Sha384>(),
                HashAlg::Sha512 => Pkcs1v15Sign::new::<Sha512>(),
            }),
            Padding::Pss => {
                // The salt length needs to be set to the size of hash function output;
                // see https://www.rfc-editor.org/rfc/rfc7518.html#section-3.5.
                PaddingScheme::Pss(match self.hash_alg {
                    HashAlg::Sha256 => Pss::new_with_salt::<Sha256>(Sha256::output_size()),
                    HashAlg::Sha384 => Pss::new_with_salt::<Sha384>(Sha384::output_size()),
                    HashAlg::Sha512 => Pss::new_with_salt::<Sha512>(Sha512::output_size()),
                })
            }
        }
    }

    fn alg_name(self) -> &'static str {
        match (self.padding_alg, self.hash_alg) {
            (Padding::Pkcs1v15, HashAlg::Sha256) => "RS256",
            (Padding::Pkcs1v15, HashAlg::Sha384) => "RS384",
            (Padding::Pkcs1v15, HashAlg::Sha512) => "RS512",
            (Padding::Pss, HashAlg::Sha256) => "PS256",
            (Padding::Pss, HashAlg::Sha384) => "PS384",
            (Padding::Pss, HashAlg::Sha512) => "PS512",
        }
    }

    /// Generates a new key pair with the specified modulus bit length (aka key length).
    pub fn generate<R: CryptoRng + RngCore>(
        rng: &mut R,
        modulus_bits: ModulusBits,
    ) -> rsa::errors::Result<(StrongKey<RsaPrivateKey>, StrongKey<RsaPublicKey>)> {
        let signing_key = RsaPrivateKey::new(rng, modulus_bits.bits())?;
        let verifying_key = signing_key.to_public_key();
        Ok((StrongKey(signing_key), StrongKey(verifying_key)))
    }
}

impl FromStr for Rsa {
    type Err = RsaParseError;

    fn from_str(s: &str) -> Result<Self, Self::Err> {
        Ok(match s {
            "RS256" => Self::rs256(),
            "RS384" => Self::rs384(),
            "RS512" => Self::rs512(),
            "PS256" => Self::ps256(),
            "PS384" => Self::ps384(),
            "PS512" => Self::ps512(),
            _ => return Err(RsaParseError(s.to_owned())),
        })
    }
}

/// Errors that can occur when parsing an [`Rsa`] algorithm from a string.
#[derive(Debug)]
#[cfg_attr(docsrs, doc(cfg(feature = "rsa")))]
pub struct RsaParseError(String);

impl fmt::Display for RsaParseError {
    fn fmt(&self, formatter: &mut fmt::Formatter<'_>) -> fmt::Result {
        write!(formatter, "Invalid RSA algorithm name: {}", self.0)
    }
}

#[cfg(feature = "std")]
impl std::error::Error for RsaParseError {}

impl StrongKey<RsaPrivateKey> {
    /// Converts this private key to a public key.
    pub fn to_public_key(&self) -> StrongKey<RsaPublicKey> {
        StrongKey(self.0.to_public_key())
    }
}

impl TryFrom<RsaPrivateKey> for StrongKey<RsaPrivateKey> {
    type Error = WeakKeyError<RsaPrivateKey>;

    fn try_from(key: RsaPrivateKey) -> Result<Self, Self::Error> {
        if ModulusBits::is_valid_bits(key.n().bits()) {
            Ok(StrongKey(key))
        } else {
            Err(WeakKeyError(key))
        }
    }
}

impl TryFrom<RsaPublicKey> for StrongKey<RsaPublicKey> {
    type Error = WeakKeyError<RsaPublicKey>;

    fn try_from(key: RsaPublicKey) -> Result<Self, Self::Error> {
        if ModulusBits::is_valid_bits(key.n().bits()) {
            Ok(StrongKey(key))
        } else {
            Err(WeakKeyError(key))
        }
    }
}

impl<'a> From<&'a RsaPublicKey> for JsonWebKey<'a> {
    fn from(key: &'a RsaPublicKey) -> JsonWebKey<'a> {
        JsonWebKey::Rsa {
            modulus: Cow::Owned(key.n().to_bytes_be()),
            public_exponent: Cow::Owned(key.e().to_bytes_be()),
            private_parts: None,
        }
    }
}

impl TryFrom<&JsonWebKey<'_>> for RsaPublicKey {
    type Error = JwkError;

    fn try_from(jwk: &JsonWebKey<'_>) -> Result<Self, Self::Error> {
        let JsonWebKey::Rsa {
            modulus,
            public_exponent,
            ..
        } = jwk
        else {
            return Err(JwkError::key_type(jwk, KeyType::Rsa));
        };

        let e = BigUint::from_bytes_be(public_exponent);
        let n = BigUint::from_bytes_be(modulus);
        Self::new(n, e).map_err(|err| JwkError::custom(anyhow::anyhow!(err)))
    }
}

/// ⚠ **Warning.** Contrary to [RFC 7518], this implementation does not set `dp`, `dq`, and `qi`
/// fields in the JWK root object, as well as `d` and `t` fields for additional factors
/// (i.e., in the `oth` array).
///
/// [RFC 7518]: https://tools.ietf.org/html/rfc7518#section-6.3.2
impl<'a> From<&'a RsaPrivateKey> for JsonWebKey<'a> {
    fn from(key: &'a RsaPrivateKey) -> JsonWebKey<'a> {
        const MSG: &str = "RsaPrivateKey must have at least 2 prime factors";

        let p = key.primes().first().expect(MSG);
        let q = key.primes().get(1).expect(MSG);

        let private_parts = RsaPrivateParts {
            private_exponent: SecretBytes::owned(key.d().to_bytes_be()),
            prime_factor_p: SecretBytes::owned(p.to_bytes_be()),
            prime_factor_q: SecretBytes::owned(q.to_bytes_be()),
            p_crt_exponent: None,
            q_crt_exponent: None,
            q_crt_coefficient: None,
            other_prime_factors: key.primes()[2..]
                .iter()
                .map(|factor| RsaPrimeFactor {
                    factor: SecretBytes::owned(factor.to_bytes_be()),
                    crt_exponent: None,
                    crt_coefficient: None,
                })
                .collect(),
        };

        JsonWebKey::Rsa {
            modulus: Cow::Owned(key.n().to_bytes_be()),
            public_exponent: Cow::Owned(key.e().to_bytes_be()),
            private_parts: Some(private_parts),
        }
    }
}

/// ⚠ **Warning.** Contrary to [RFC 7518] (at least, in spirit), this conversion ignores
/// `dp`, `dq`, and `qi` fields from JWK, as well as `d` and `t` fields for additional factors.
///
/// [RFC 7518]: https://www.rfc-editor.org/rfc/rfc7518.html
impl TryFrom<&JsonWebKey<'_>> for RsaPrivateKey {
    type Error = JwkError;

    fn try_from(jwk: &JsonWebKey<'_>) -> Result<Self, Self::Error> {
        let JsonWebKey::Rsa {
            modulus,
            public_exponent,
            private_parts,
        } = jwk
        else {
            return Err(JwkError::key_type(jwk, KeyType::Rsa));
        };

        let RsaPrivateParts {
            private_exponent: d,
            prime_factor_p,
            prime_factor_q,
            other_prime_factors,
            ..
        } = private_parts
            .as_ref()
            .ok_or_else(|| JwkError::NoField("d".into()))?;

        let e = BigUint::from_bytes_be(public_exponent);
        let n = BigUint::from_bytes_be(modulus);
        let d = BigUint::from_bytes_be(d);

        let mut factors = Vec::with_capacity(2 + other_prime_factors.len());
        factors.push(BigUint::from_bytes_be(prime_factor_p));
        factors.push(BigUint::from_bytes_be(prime_factor_q));
        factors.extend(
            other_prime_factors
                .iter()
                .map(|prime| BigUint::from_bytes_be(&prime.factor)),
        );

        let key = Self::from_components(n, e, d, factors);
        let key = key.map_err(|err| JwkError::custom(anyhow::anyhow!(err)))?;
        key.validate()
            .map_err(|err| JwkError::custom(anyhow::anyhow!(err)))?;
        Ok(key)
    }
}