1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
//! Minimalistic [JSON web token (JWT)][JWT] implementation with focus on type safety
//! and secure cryptographic primitives.
//!
//! # Design choices
//!
//! - JWT signature algorithms (i.e., cryptographic algorithms providing JWT integrity)
//!   are expressed via the [`Algorithm`] trait, which uses fully typed keys and signatures.
//! - [JWT header] is represented by the [`Header`] struct. Notably, `Header` does not
//!   expose the [`alg` field].
//!   Instead, `alg` is filled automatically during token creation, and is compared to the
//!   expected value during verification. (If you do not know the JWT signature algorithm during
//!   verification, you're doing something wrong.) This eliminates the possibility
//!   of [algorithm switching attacks][switching].
//!
//! # Additional features
//!
//! - The crate supports more compact [CBOR] encoding of the claims. This feature is enabled
//!   via the [`ciborium` feature](#cbor-support).
//! - The crate supports `EdDSA` algorithm with the Ed25519 elliptic curve, and `ES256K` algorithm
//!   with the secp256k1 elliptic curve.
//! - Supports basic [JSON Web Key](https://tools.ietf.org/html/rfc7517.html) functionality,
//!   e.g., for converting keys to / from JSON or computing
//!   [a key thumbprint](https://tools.ietf.org/html/rfc7638).
//!
//! ## Supported algorithms
//!
//! | Algorithm(s) | Feature | Description |
//! |--------------|---------|-------------|
//! | `HS256`, `HS384`, `HS512` | - | Uses pure Rust [`sha2`] crate |
//! | `EdDSA` (Ed25519) | [`exonum-crypto`] | [`libsodium`] binding |
//! | `EdDSA` (Ed25519) | [`ed25519-dalek`] | Pure Rust implementation |
//! | `EdDSA` (Ed25519) | [`ed25519-compact`] | Compact pure Rust implementation, WASM-compatible |
//! | `ES256K` | `es256k` | [Rust binding][`secp256k1`] for [`libsecp256k1`] |
//! | `ES256K` | [`k256`] | Pure Rust implementation |
//! | `ES256`  | [`p256`] | Pure Rust implementation |
//! | `RS*`, `PS*` (RSA) | `rsa` | Uses pure Rust [`rsa`] crate with blinding |
//!
//! Beware that the `rsa` crate (along with other RSA implementations) may be susceptible to
//! [the "Marvin" timing side-channel attack](https://github.com/RustCrypto/RSA/security/advisories/GHSA-c38w-74pg-36hr)
//! at the time of writing; use with caution.
//!
//! `EdDSA` and `ES256K` algorithms are somewhat less frequently supported by JWT implementations
//! than others since they are recent additions to the JSON Web Algorithms (JWA) suit.
//! They both work with elliptic curves
//! (Curve25519 and secp256k1; both are widely used in crypto community and believed to be
//! securely generated). These algs have 128-bit security, making them an alternative
//! to `ES256`.
//!
//! RSA support requires a system-wide RNG retrieved via the [`getrandom`] crate.
//! In case of a compilation failure in the `getrandom` crate, you may want
//! to include it as a direct dependency and specify one of its features
//! to assist `getrandom` with choosing an appropriate RNG implementation; consult `getrandom` docs
//! for more details. See also WASM and bare-metal E2E tests included
//! in the [source code repository] of this crate.
//!
//! ## CBOR support
//!
//! If the `ciborium` crate feature is enabled (and it is enabled by default), token claims can
//! be encoded using [CBOR] with the [`AlgorithmExt::compact_token()`] method.
//! The compactly encoded JWTs have the [`cty` field] (content type) in their header
//! set to `"CBOR"`. Tokens with such encoding can be verified in the same way as ordinary tokens;
//! see [examples below](#examples).
//!
//! If the `ciborium` feature is disabled, `AlgorithmExt::compact_token()` is not available.
//! Verifying CBOR-encoded tokens in this case is not supported either;
//! a [`ParseError::UnsupportedContentType`] will be returned when creating an [`UntrustedToken`]
//! from the token string.
//!
//! # `no_std` support
//!
//! The crate supports a `no_std` compilation mode. This is controlled by two features:
//! `clock` and `std`; both are on by default.
//!
//! - The `clock` feature enables getting the current time using `Utc::now()` from [`chrono`].
//!   Without it, some [`TimeOptions`] constructors, such as the `Default` impl,
//!   are not available. It is still possible to create `TimeOptions` with an explicitly specified
//!   clock function, or to set / verify time-related [`Claims`] fields manually.
//! - The `std` feature is propagated to the core dependencies and enables `std`-specific
//!   functionality (such as error types implementing the standard `Error` trait).
//!
//! Some `alloc` types are still used in the `no_std` mode, such as `String`, `Vec` and `Cow`.
//!
//! Note that not all crypto backends are `no_std`-compatible.
//!
//! [JWT]: https://jwt.io/
//! [switching]: https://auth0.com/blog/critical-vulnerabilities-in-json-web-token-libraries/
//! [JWT header]: https://tools.ietf.org/html/rfc7519#section-5
//! [`alg` field]: https://tools.ietf.org/html/rfc7515#section-4.1.1
//! [`cty` field]: https://tools.ietf.org/html/rfc7515#section-4.1.10
//! [CBOR]: https://tools.ietf.org/html/rfc7049
//! [`sha2`]: https://docs.rs/sha2/
//! [`libsodium`]: https://download.libsodium.org/doc/
//! [`exonum-crypto`]: https://docs.rs/exonum-crypto/
//! [`ed25519-dalek`]: https://doc.dalek.rs/ed25519_dalek/
//! [`ed25519-compact`]: https://crates.io/crates/ed25519-compact
//! [`secp256k1`]: https://docs.rs/secp256k1/
//! [`libsecp256k1`]: https://github.com/bitcoin-core/secp256k1
//! [`k256`]: https://docs.rs/k256/
//! [`p256`]: https://docs.rs/p256/
//! [`rsa`]: https://docs.rs/rsa/
//! [`chrono`]: https://docs.rs/chrono/
//! [`getrandom`]: https://docs.rs/getrandom/
//! [source code repository]: https://github.com/slowli/jwt-compact
//!
//! # Examples
//!
//! Basic JWT lifecycle:
//!
//! ```
//! use chrono::{Duration, Utc};
//! use jwt_compact::{prelude::*, alg::{Hs256, Hs256Key}};
//! use serde::{Serialize, Deserialize};
//!
//! /// Custom claims encoded in the token.
//! #[derive(Debug, PartialEq, Serialize, Deserialize)]
//! struct CustomClaims {
//!     /// `sub` is a standard claim which denotes claim subject:
//!     /// https://tools.ietf.org/html/rfc7519#section-4.1.2
//!     #[serde(rename = "sub")]
//!     subject: String,
//! }
//!
//! # fn main() -> anyhow::Result<()> {
//! // Choose time-related options for token creation / validation.
//! let time_options = TimeOptions::default();
//! // Create a symmetric HMAC key, which will be used both to create and verify tokens.
//! let key = Hs256Key::new(b"super_secret_key_donut_steel");
//! // Create a token.
//! let header = Header::empty().with_key_id("my-key");
//! let claims = Claims::new(CustomClaims { subject: "alice".to_owned() })
//!     .set_duration_and_issuance(&time_options, Duration::days(7))
//!     .set_not_before(Utc::now() - Duration::hours(1));
//! let token_string = Hs256.token(&header, &claims, &key)?;
//! println!("token: {token_string}");
//!
//! // Parse the token.
//! let token = UntrustedToken::new(&token_string)?;
//! // Before verifying the token, we might find the key which has signed the token
//! // using the `Header.key_id` field.
//! assert_eq!(token.header().key_id, Some("my-key".to_owned()));
//! // Validate the token integrity.
//! let token: Token<CustomClaims> = Hs256.validator(&key).validate(&token)?;
//! // Validate additional conditions.
//! token.claims()
//!     .validate_expiration(&time_options)?
//!     .validate_maturity(&time_options)?;
//! // Now, we can extract information from the token (e.g., its subject).
//! let subject = &token.claims().custom.subject;
//! assert_eq!(subject, "alice");
//! # Ok(())
//! # } // end main()
//! ```
//!
//! ## Compact JWT
//!
//! ```
//! # use chrono::Duration;
//! # use hex_buffer_serde::{Hex as _, HexForm};
//! # use jwt_compact::{prelude::*, alg::{Hs256, Hs256Key}};
//! # use serde::{Serialize, Deserialize};
//! /// Custom claims encoded in the token.
//! #[derive(Debug, PartialEq, Serialize, Deserialize)]
//! struct CustomClaims {
//!     /// `sub` is a standard claim which denotes claim subject:
//!     ///     https://tools.ietf.org/html/rfc7519#section-4.1.2
//!     /// The custom serializer we use allows to efficiently
//!     /// encode the subject in CBOR.
//!     #[serde(rename = "sub", with = "HexForm")]
//!     subject: [u8; 32],
//! }
//!
//! # fn main() -> anyhow::Result<()> {
//! let time_options = TimeOptions::default();
//! let key = Hs256Key::new(b"super_secret_key_donut_steel");
//! let claims = Claims::new(CustomClaims { subject: [111; 32] })
//!     .set_duration_and_issuance(&time_options, Duration::days(7));
//! let token = Hs256.token(&Header::empty(), &claims, &key)?;
//! println!("token: {token}");
//! let compact_token = Hs256.compact_token(&Header::empty(), &claims, &key)?;
//! println!("compact token: {compact_token}");
//! // The compact token should be ~40 chars shorter.
//!
//! // Parse the compact token.
//! let token = UntrustedToken::new(&compact_token)?;
//! let token: Token<CustomClaims> = Hs256.validator(&key).validate(&token)?;
//! token.claims().validate_expiration(&time_options)?;
//! // Now, we can extract information from the token (e.g., its subject).
//! assert_eq!(token.claims().custom.subject, [111; 32]);
//! # Ok(())
//! # } // end main()
//! ```
//!
//! ## JWT with custom header fields
//!
//! ```
//! # use chrono::Duration;
//! # use jwt_compact::{prelude::*, alg::{Hs256, Hs256Key}};
//! # use serde::{Deserialize, Serialize};
//! #[derive(Debug, PartialEq, Serialize, Deserialize)]
//! struct CustomClaims { subject: [u8; 32] }
//!
//! /// Additional fields in the token header.
//! #[derive(Debug, Clone, Serialize, Deserialize)]
//! struct HeaderExtensions { custom: bool }
//!
//! # fn main() -> anyhow::Result<()> {
//! let time_options = TimeOptions::default();
//! let key = Hs256Key::new(b"super_secret_key_donut_steel");
//! let claims = Claims::new(CustomClaims { subject: [111; 32] })
//!     .set_duration_and_issuance(&time_options, Duration::days(7));
//! let header = Header::new(HeaderExtensions { custom: true })
//!     .with_key_id("my-key");
//! let token = Hs256.token(&header, &claims, &key)?;
//! print!("token: {token}");
//!
//! // Parse the token.
//! let token: UntrustedToken<HeaderExtensions> =
//!     token.as_str().try_into()?;
//! // Token header (incl. custom fields) can be accessed right away.
//! assert_eq!(token.header().key_id.as_deref(), Some("my-key"));
//! assert!(token.header().other_fields.custom);
//! // Token can then be validated as usual.
//! let token = Hs256.validator::<CustomClaims>(&key).validate(&token)?;
//! assert_eq!(token.claims().custom.subject, [111; 32]);
//! # Ok(())
//! # } // end main()
//! ```

#![cfg_attr(not(feature = "std"), no_std)]
// Documentation settings.
#![cfg_attr(docsrs, feature(doc_cfg))]
#![doc(html_root_url = "https://docs.rs/jwt-compact/0.8.0")]
// Linter settings.
#![warn(missing_debug_implementations, missing_docs, bare_trait_objects)]
#![warn(clippy::all, clippy::pedantic)]
#![allow(
    clippy::missing_errors_doc,
    clippy::must_use_candidate,
    clippy::module_name_repetitions
)]

pub mod alg;
mod claims;
mod error;
pub mod jwk;
mod token;
mod traits;

// Polyfill for `alloc` types.
mod alloc {
    #[cfg(not(feature = "std"))]
    extern crate alloc as std;

    pub use std::{
        borrow::{Cow, ToOwned},
        format,
        string::{String, ToString},
        vec::Vec,
    };
}

/// Prelude to neatly import all necessary stuff from the crate.
pub mod prelude {
    #[doc(no_inline)]
    pub use crate::{AlgorithmExt as _, Claims, Header, TimeOptions, Token, UntrustedToken};
}

pub use crate::{
    claims::{Claims, Empty, TimeOptions},
    error::{Claim, CreationError, ParseError, ValidationError},
    token::{Header, SignedToken, Thumbprint, Token, UntrustedToken},
    traits::{Algorithm, AlgorithmExt, AlgorithmSignature, Renamed, Validator},
};

#[cfg(doctest)]
doc_comment::doctest!("../README.md");