1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
//! Key traits defined by the crate.

use core::{marker::PhantomData, num::NonZeroUsize};

use base64ct::{Base64UrlUnpadded, Encoding};
use serde::{de::DeserializeOwned, Serialize};

#[cfg(feature = "ciborium")]
use crate::error::CborSerError;
use crate::{
    alloc::{Cow, String, ToOwned, Vec},
    token::CompleteHeader,
    Claims, CreationError, Header, SignedToken, Token, UntrustedToken, ValidationError,
};

/// Signature for a certain JWT signing [`Algorithm`].
///
/// We require that signature can be restored from a byte slice,
/// and can be represented as a byte slice.
pub trait AlgorithmSignature: Sized {
    /// Constant byte length of signatures supported by the [`Algorithm`], or `None` if
    /// the signature length is variable.
    ///
    /// - If this value is `Some(_)`, the signature will be first checked for its length
    ///   during token verification. An [`InvalidSignatureLen`] error will be raised if the length
    ///   is invalid. [`Self::try_from_slice()`] will thus always receive a slice with
    ///   the expected length.
    /// - If this value is `None`, no length check is performed before calling
    ///   [`Self::try_from_slice()`].
    ///
    /// [`InvalidSignatureLen`]: crate::ValidationError::InvalidSignatureLen
    const LENGTH: Option<NonZeroUsize> = None;

    /// Attempts to restore a signature from a byte slice. This method may fail
    /// if the slice is malformed.
    fn try_from_slice(slice: &[u8]) -> anyhow::Result<Self>;

    /// Represents this signature as bytes.
    fn as_bytes(&self) -> Cow<'_, [u8]>;
}

/// JWT signing algorithm.
pub trait Algorithm {
    /// Key used when issuing new tokens.
    type SigningKey;
    /// Key used when verifying tokens. May coincide with [`Self::SigningKey`] for symmetric
    /// algorithms (e.g., `HS*`).
    type VerifyingKey;
    /// Signature produced by the algorithm.
    type Signature: AlgorithmSignature;

    /// Returns the name of this algorithm, as mentioned in the `alg` field of the JWT header.
    fn name(&self) -> Cow<'static, str>;

    /// Signs a `message` with the `signing_key`.
    fn sign(&self, signing_key: &Self::SigningKey, message: &[u8]) -> Self::Signature;

    /// Verifies the `message` against the `signature` and `verifying_key`.
    fn verify_signature(
        &self,
        signature: &Self::Signature,
        verifying_key: &Self::VerifyingKey,
        message: &[u8],
    ) -> bool;
}

/// Algorithm that uses a custom name when creating and validating tokens.
///
/// # Examples
///
/// ```
/// use jwt_compact::{alg::{Hs256, Hs256Key}, prelude::*, Empty, Renamed};
///
/// # fn main() -> anyhow::Result<()> {
/// let alg = Renamed::new(Hs256, "HS2");
/// let key = Hs256Key::new(b"super_secret_key_donut_steel");
/// let token_string = alg.token(&Header::empty(), &Claims::empty(), &key)?;
///
/// let token = UntrustedToken::new(&token_string)?;
/// assert_eq!(token.algorithm(), "HS2");
/// // Note that the created token cannot be verified against the original algorithm
/// // since the algorithm name recorded in the token header doesn't match.
/// assert!(Hs256.validator::<Empty>(&key).validate(&token).is_err());
///
/// // ...but the modified alg is working as expected.
/// assert!(alg.validator::<Empty>(&key).validate(&token).is_ok());
/// # Ok(())
/// # }
/// ```
#[derive(Debug, Clone, Copy)]
pub struct Renamed<A> {
    inner: A,
    name: &'static str,
}

impl<A: Algorithm> Renamed<A> {
    /// Creates a renamed algorithm.
    pub fn new(algorithm: A, new_name: &'static str) -> Self {
        Self {
            inner: algorithm,
            name: new_name,
        }
    }
}

impl<A: Algorithm> Algorithm for Renamed<A> {
    type SigningKey = A::SigningKey;
    type VerifyingKey = A::VerifyingKey;
    type Signature = A::Signature;

    fn name(&self) -> Cow<'static, str> {
        Cow::Borrowed(self.name)
    }

    fn sign(&self, signing_key: &Self::SigningKey, message: &[u8]) -> Self::Signature {
        self.inner.sign(signing_key, message)
    }

    fn verify_signature(
        &self,
        signature: &Self::Signature,
        verifying_key: &Self::VerifyingKey,
        message: &[u8],
    ) -> bool {
        self.inner
            .verify_signature(signature, verifying_key, message)
    }
}

/// Automatically implemented extensions of the `Algorithm` trait.
pub trait AlgorithmExt: Algorithm {
    /// Creates a new token and serializes it to string.
    fn token<T>(
        &self,
        header: &Header<impl Serialize>,
        claims: &Claims<T>,
        signing_key: &Self::SigningKey,
    ) -> Result<String, CreationError>
    where
        T: Serialize;

    /// Creates a new token with CBOR-encoded claims and serializes it to string.
    #[cfg(feature = "ciborium")]
    #[cfg_attr(docsrs, doc(cfg(feature = "ciborium")))]
    fn compact_token<T>(
        &self,
        header: &Header<impl Serialize>,
        claims: &Claims<T>,
        signing_key: &Self::SigningKey,
    ) -> Result<String, CreationError>
    where
        T: Serialize;

    /// Creates a JWT validator for the specified verifying key and the claims type.
    /// The validator can then be used to validate integrity of one or more tokens.
    fn validator<'a, T>(&'a self, verifying_key: &'a Self::VerifyingKey) -> Validator<'a, Self, T>;

    /// Validates the token integrity against the provided `verifying_key`.
    #[deprecated = "Use `.validator().validate()` for added flexibility"]
    fn validate_integrity<T>(
        &self,
        token: &UntrustedToken<'_>,
        verifying_key: &Self::VerifyingKey,
    ) -> Result<Token<T>, ValidationError>
    where
        T: DeserializeOwned;

    /// Validates the token integrity against the provided `verifying_key`.
    ///
    /// Unlike [`validate_integrity`](#tymethod.validate_integrity), this method retains more
    /// information about the original token, in particular, its signature.
    #[deprecated = "Use `.validator().validate_for_signed_token()` for added flexibility"]
    fn validate_for_signed_token<T>(
        &self,
        token: &UntrustedToken<'_>,
        verifying_key: &Self::VerifyingKey,
    ) -> Result<SignedToken<Self, T>, ValidationError>
    where
        T: DeserializeOwned;
}

impl<A: Algorithm> AlgorithmExt for A {
    fn token<T>(
        &self,
        header: &Header<impl Serialize>,
        claims: &Claims<T>,
        signing_key: &Self::SigningKey,
    ) -> Result<String, CreationError>
    where
        T: Serialize,
    {
        let complete_header = CompleteHeader {
            algorithm: self.name(),
            content_type: None,
            inner: header,
        };
        let header = serde_json::to_string(&complete_header).map_err(CreationError::Header)?;
        let mut buffer = Vec::new();
        encode_base64_buf(&header, &mut buffer);

        let claims = serde_json::to_string(claims).map_err(CreationError::Claims)?;
        buffer.push(b'.');
        encode_base64_buf(&claims, &mut buffer);

        let signature = self.sign(signing_key, &buffer);
        buffer.push(b'.');
        encode_base64_buf(signature.as_bytes(), &mut buffer);

        // SAFETY: safe by construction: base64 alphabet and `.` char are valid UTF-8.
        Ok(unsafe { String::from_utf8_unchecked(buffer) })
    }

    #[cfg(feature = "ciborium")]
    fn compact_token<T>(
        &self,
        header: &Header<impl Serialize>,
        claims: &Claims<T>,
        signing_key: &Self::SigningKey,
    ) -> Result<String, CreationError>
    where
        T: Serialize,
    {
        let complete_header = CompleteHeader {
            algorithm: self.name(),
            content_type: Some("CBOR".to_owned()),
            inner: header,
        };
        let header = serde_json::to_string(&complete_header).map_err(CreationError::Header)?;
        let mut buffer = Vec::new();
        encode_base64_buf(&header, &mut buffer);

        let mut serialized_claims = vec![];
        ciborium::into_writer(claims, &mut serialized_claims).map_err(|err| {
            CreationError::CborClaims(match err {
                CborSerError::Value(message) => CborSerError::Value(message),
                CborSerError::Io(_) => unreachable!(), // writing to a `Vec` always succeeds
            })
        })?;
        buffer.push(b'.');
        encode_base64_buf(&serialized_claims, &mut buffer);

        let signature = self.sign(signing_key, &buffer);
        buffer.push(b'.');
        encode_base64_buf(signature.as_bytes(), &mut buffer);

        // SAFETY: safe by construction: base64 alphabet and `.` char are valid UTF-8.
        Ok(unsafe { String::from_utf8_unchecked(buffer) })
    }

    fn validator<'a, T>(&'a self, verifying_key: &'a Self::VerifyingKey) -> Validator<'a, Self, T> {
        Validator {
            algorithm: self,
            verifying_key,
            _claims: PhantomData,
        }
    }

    fn validate_integrity<T>(
        &self,
        token: &UntrustedToken<'_>,
        verifying_key: &Self::VerifyingKey,
    ) -> Result<Token<T>, ValidationError>
    where
        T: DeserializeOwned,
    {
        self.validator::<T>(verifying_key).validate(token)
    }

    fn validate_for_signed_token<T>(
        &self,
        token: &UntrustedToken<'_>,
        verifying_key: &Self::VerifyingKey,
    ) -> Result<SignedToken<Self, T>, ValidationError>
    where
        T: DeserializeOwned,
    {
        self.validator::<T>(verifying_key)
            .validate_for_signed_token(token)
    }
}

/// Validator for a certain signing [`Algorithm`] associated with a specific verifying key
/// and a claims type. Produced by the [`AlgorithmExt::validator()`] method.
#[derive(Debug)]
pub struct Validator<'a, A: Algorithm + ?Sized, T> {
    algorithm: &'a A,
    verifying_key: &'a A::VerifyingKey,
    _claims: PhantomData<fn() -> T>,
}

impl<A: Algorithm + ?Sized, T> Clone for Validator<'_, A, T> {
    fn clone(&self) -> Self {
        *self
    }
}

impl<A: Algorithm + ?Sized, T> Copy for Validator<'_, A, T> {}

impl<A: Algorithm + ?Sized, T: DeserializeOwned> Validator<'_, A, T> {
    /// Validates the token integrity against a verifying key enclosed in this validator.
    pub fn validate<H: Clone>(
        self,
        token: &UntrustedToken<'_, H>,
    ) -> Result<Token<T, H>, ValidationError> {
        self.validate_for_signed_token(token)
            .map(|signed| signed.token)
    }

    /// Validates the token integrity against a verifying key enclosed in this validator,
    /// and returns the validated [`Token`] together with its signature.
    pub fn validate_for_signed_token<H: Clone>(
        self,
        token: &UntrustedToken<'_, H>,
    ) -> Result<SignedToken<A, T, H>, ValidationError> {
        let expected_alg = self.algorithm.name();
        if expected_alg != token.algorithm() {
            return Err(ValidationError::AlgorithmMismatch {
                expected: expected_alg.into_owned(),
                actual: token.algorithm().to_owned(),
            });
        }

        let signature = token.signature_bytes();
        if let Some(expected_len) = A::Signature::LENGTH {
            if signature.len() != expected_len.get() {
                return Err(ValidationError::InvalidSignatureLen {
                    expected: expected_len.get(),
                    actual: signature.len(),
                });
            }
        }

        let signature =
            A::Signature::try_from_slice(signature).map_err(ValidationError::MalformedSignature)?;
        // We assume that parsing claims is less computationally demanding than
        // validating a signature.
        let claims = token.deserialize_claims_unchecked::<T>()?;
        if !self
            .algorithm
            .verify_signature(&signature, self.verifying_key, &token.signed_data)
        {
            return Err(ValidationError::InvalidSignature);
        }

        Ok(SignedToken {
            signature,
            token: Token::new(token.header().clone(), claims),
        })
    }
}

fn encode_base64_buf(source: impl AsRef<[u8]>, buffer: &mut Vec<u8>) {
    let source = source.as_ref();
    let previous_len = buffer.len();
    let claims_len = Base64UrlUnpadded::encoded_len(source);
    buffer.resize(previous_len + claims_len, 0);
    Base64UrlUnpadded::encode(source, &mut buffer[previous_len..])
        .expect("miscalculated base64-encoded length; this should never happen");
}