1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450
//! OpenCL-accelerated 2D convolutions.
//!
//! [Convolution] is a fundamental building block in signal processing. This crate is focused
//! on 2D convolutions (i.e., the signal is a still image) in the context of [deep learning]
//! (more precisely, [convolutional neural networks][cnn]).
//! The second requirement means that the convolution filter may contain many (order of hundreds)
//! filters; and the input may contain many channels (order of hundreds or thousands), rather
//! than traditional 3 or 4. Computing such convolutions is computationally heavy and can be
//! effectively accelerated with the help of [OpenCL].
//!
//! # Features
//!
//! The crate implements convolutions on two numerical formats:
//!
//! - Single-precision floats (`f32`)
//! - Signed 8-bit integers with 32-bit multiply-add accumulator (this format is frequently denoted
//! `int8/32` in deep learning literature). Quantization parameters are applied uniformly
//! to the entire layer.
//!
//! For both cases, dilated or grouped convolutions are supported.
//!
//! # Implementation details
//!
//! The implementation uses output-stationary workflow (see, e.g., [this paper] for
//! the definition); that is, each element of the output tensor is computed in a single run
//! of the OpenCL kernel. This minimizes memory overhead, but may not be the fastest algorithm.
//!
//! [Convolution]: https://en.wikipedia.org/wiki/Convolution
//! [deep learning]: https://en.wikipedia.org/wiki/Deep_learning
//! [cnn]: https://en.wikipedia.org/wiki/Convolutional_neural_network
//! [OpenCL]: https://www.khronos.org/opencl/
//! [this paper]: https://dl.acm.org/citation.cfm?id=3001177
//!
//! # Examples
//!
//! ## Floating-point convolution
//!
//! ```
//! use ndarray::Array4;
//! use rand::{Rng, thread_rng};
//! use ocl_convolution::{Convolution, FeatureMap, Params};
//!
//! # fn main() -> Result<(), ocl::Error> {
//! let convolution = Convolution::f32(3)?.build(Params {
//! strides: [1, 1],
//! pads: [0; 4],
//! dilation: [1, 1],
//! groups: 1,
//! })?;
//!
//! // Generate random signal with 6x6 spatial dims and 3 channels.
//! let mut rng = thread_rng();
//! let signal = Array4::from_shape_fn([1, 6, 6, 3], |_| rng.gen_range(-1.0..=1.0));
//! // Construct two 3x3 spatial filters.
//! let filters = Array4::from_shape_fn([2, 3, 3, 3], |_| rng.gen_range(-1.0..=1.0));
//! // Perform the convolution. The output must have 4x4 spatial dims
//! // and contain 2 channels (1 per each filter). The output layout will
//! // be the same as in the signal.
//! let output = convolution.compute(
//! // `FeatureMap` wraps `ArrayView4` with information about
//! // memory layout (which is "channels-last" / NHWC in this case).
//! FeatureMap::nhwc(&signal),
//! &filters,
//! )?;
//! assert_eq!(output.shape(), [1, 4, 4, 2]);
//!
//! // For increased efficiency, we may pin filter memory.
//! // This is especially useful when the same filters are convolved
//! // with multiple signals.
//! let convolution = convolution.with_filters(&filters)?;
//! let new_output = convolution.compute(FeatureMap::nhwc(&signal))?;
//! assert_eq!(output, new_output);
//! # Ok(())
//! # }
//! ```
//!
//! ## Quantized convolution
//!
//! ```
//! use ndarray::Array4;
//! use rand::{Rng, thread_rng};
//! use ocl_convolution::{Convolution, I8Params, FeatureMap, Params};
//!
//! # fn main() -> Result<(), ocl::Error> {
//! const BIT_SHIFT: u8 = 16;
//! let params = I8Params {
//! common: Params::default(),
//! // These params are found by profiling; here, they are
//! // chosen randomly.
//! bit_shift: BIT_SHIFT,
//! scale: I8Params::convert_scale(BIT_SHIFT, 0.1),
//! output_bias: -10,
//! signal_bias: 20,
//! filter_bias: -5,
//! };
//! let convolution = Convolution::i8(3)?.build(params)?;
//!
//! // Generate random signal with 6x6 spatial dims and 3 channels.
//! let mut rng = thread_rng();
//! let signal = Array4::from_shape_fn([1, 6, 6, 3], |_| rng.gen_range(-127..=127));
//! // Construct two 3x3 spatial filters.
//! let filters = Array4::from_shape_fn([2, 3, 3, 3], |_| rng.gen_range(-127..=127));
//! // Perform the convolution. The output must have 4x4 spatial dims
//! // and contain 2 channels (1 per each filter).
//! let output = convolution.compute(
//! FeatureMap::nhwc(&signal),
//! &filters,
//! )?;
//! assert_eq!(output.shape(), [1, 4, 4, 2]);
//! # Ok(())
//! # }
//! ```
#![doc(html_root_url = "https://docs.rs/ocl-convolution/0.3.0")]
#![warn(missing_debug_implementations, missing_docs, bare_trait_objects)]
#![warn(clippy::all, clippy::pedantic)]
#![allow(
clippy::missing_errors_doc,
clippy::must_use_candidate,
clippy::module_name_repetitions,
clippy::doc_markdown
)]
use ndarray::{Array4, ArrayView4};
use ocl::OclPrm;
use std::{fmt, marker::PhantomData};
mod base;
mod buffers;
mod params;
use crate::{
base::Base,
buffers::{Filters, Pinned},
};
pub use crate::{
base::ConvolutionBuilder,
buffers::{FeatureMap, FeatureMapShape, Layout},
params::{I8Params, Params},
};
const SOURCE: &str = include_str!(concat!(env!("OUT_DIR"), "/conv.cl"));
/// Supported element types for convolutions.
pub trait ConvElement: OclPrm + Copy + 'static {
/// Type of the multiply-add accumulator.
type Acc: OclPrm + Copy + 'static;
/// Parameters of the convolution.
type Params: Copy + Into<Params> + Into<Self::ClParams>;
/// OpenCL-friendly version of parameters. This is considered an implementation detail.
type ClParams: OclPrm;
}
impl ConvElement for f32 {
type Acc = f32;
type Params = Params;
type ClParams = params::ClParams;
}
impl ConvElement for i8 {
type Acc = i32;
type Params = I8Params;
type ClParams = params::ClI8Params;
}
impl ConvolutionBuilder<f32> {
/// Creates a new floating-point convolution.
pub fn build(&self, params: Params) -> ocl::Result<Convolution<f32>> {
Base::new(self, params).map(Convolution)
}
}
impl ConvolutionBuilder<i8> {
/// Creates a new quantized convolution.
pub fn build(&self, params: I8Params) -> ocl::Result<Convolution<i8>> {
Base::new(self, params).map(Convolution)
}
}
/// Convolution without pinned memory.
pub struct Convolution<T: ConvElement>(Base<PhantomData<T>>);
impl<T> fmt::Debug for Convolution<T>
where
T: ConvElement,
T::Params: fmt::Debug,
{
fn fmt(&self, formatter: &mut fmt::Formatter<'_>) -> fmt::Result {
formatter.debug_tuple("Convolution").field(&self.0).finish()
}
}
impl Convolution<f32> {
/// Creates a new floating-point convolution builder. `size` determines the filter size
/// and must be odd (1, 3, 5, ...).
///
/// # Panics
///
/// Panics if the filter `size` is even.
pub fn f32(size: u32) -> ocl::Result<ConvolutionBuilder<f32>> {
ConvolutionBuilder::new(size, &[("KERNEL_TYPE", 32)], SOURCE)
}
}
/// Quantized convolution over signed 8-bit integers.
///
/// Due to use of `i8` inputs, computations are performed much faster than on `f32` inputs
/// (the difference manifests most on the specialized hardware, but it is seen in this
/// OpenCL-powered implementation as well).
///
/// ## Connection to real-value convolution
///
/// Quantized convolution mirrors real-valued convolution in which `i8` elements
/// of the signal, filter and output tensors represent real-valued numbers with the
/// following mapping:
///
/// ```
/// let scale: f32 = // ...
/// # 1.0;
/// let bias: i32 = // ...
/// # 0; drop(
/// |x: i8| -> f32 { scale * (i32::from(x) - bias) as f32 }
/// # )
/// ```
///
/// `scale` and `bias` may differ for different tensors; these params are usually determined
/// by *profiling* the corresponding convolutional neural network (see e.g. [this paper]).
///
/// Denote these quantiation params for tensor `T` as `T.scale` and `T.bias`. Denote `S`
/// the signal, `F` the filter, `O` the output. Convolution parameters must be set as follows:
///
/// | `I8Params` field | Value |
/// |------------------|-----------|
/// | `signal_bias` | `-S.bias` |
/// | `filter_bias` | `-F.bias` |
/// | `output_bias` | `O.bias` |
/// | `scale` | `S.scale * F.scale / O.scale` |
///
/// `scale` is represented as a fixed-point number with [`bit_shift`] binary digits after
/// the point. Note that filter biases `B` are not transformed during the computation.
///
/// # Computing convolution
///
/// Suppose `S` is the signal and `F` is the filter tensor; both contain `i8` values.
/// The computation is performed as follows:
///
/// 1. Unbias the signal: `S := S + params.signal_bias`.
/// 2. Unbias the filters: `F := F + params.filter_bias`.
/// 3. Compute "standard" convolution output `O := S (*) F` using `i32` precision.
/// 4. Upscale each number in the output: `O := O * params.scale`.
/// 5. If there is filter bias `B` provided, apply bias to the output per each output channel:
/// `O[f, ..] := O[f, ..] + B[f]`.
/// 6. Downscale the output: `O := round(O / 2**self.bit_shift)`,
/// where `round()` works as floating-point rounding with the default mode
/// (round to nearest, ties to even).
/// 7. Apply output bias: `O := O + params.output_bias`.
/// 8. Saturate output to `i8` range.
///
/// [`bit_shift`]: I8Params::bit_shift
/// [this paper]: https://arxiv.org/abs/1805.00907
impl Convolution<i8> {
/// Creates a new `i8` convolution builder. `size` determines the filter size
/// and must be odd (1, 3, 5, ...).
///
/// # Panics
///
/// Panics if the filter `size` is even.
pub fn i8(size: u32) -> ocl::Result<ConvolutionBuilder<i8>> {
ConvolutionBuilder::new(size, &[("KERNEL_TYPE", 8)], SOURCE)
}
}
impl<T: ConvElement> Convolution<T> {
/// Spatial size of the convolution.
pub fn size(&self) -> u32 {
self.0.size()
}
/// Returns general parameters of the convolution.
pub fn params(&self) -> T::Params {
self.0.params()
}
/// Sets convolution parameters.
pub fn set_params(&mut self, params: T::Params) -> ocl::Result<()> {
self.0.set_params(params)
}
/// Returns the convolution with pinned filter memory.
///
/// # Parameters
///
/// - `filters` must have `MxK_HxK_WxC` layout, where `M` is the number of filters,
/// `K_H` and `K_W` are spatial dimensions of a filter, `C` is the number of input channels.
pub fn with_filters<'a>(
self,
filters: impl Into<ArrayView4<'a, T>>,
) -> ocl::Result<FiltersConvolution<T>> {
self.0
.with_filters(filters.into(), None)
.map(FiltersConvolution)
}
/// Returns the convolution with pinned filter / filter bias memory.
pub fn with_biased_filters<'a>(
self,
filters: impl Into<ArrayView4<'a, T>>,
filter_biases: &[T::Acc],
) -> ocl::Result<FiltersConvolution<T>> {
self.0
.with_filters(filters.into(), Some(filter_biases))
.map(FiltersConvolution)
}
/// Performs convolution on the provided `signal` and `filters`.
///
/// # Parameters
///
/// - `filters` must have `MxK_HxK_WxC` layout, where `M` is the number of filters,
/// `K_H` and `K_W` are spatial dimensions of a filter, `C` is the number of input channels.
///
/// # Return value
///
/// The output will have the same layout as `signal`. An error means something wrong
/// with OpenCL.
///
/// # Panics
///
/// - Panics if `filters` do not have expected spatial dimensions, i.e.,
/// `self.size() x self.size()`.
/// - Panics if the number of input channels differs from number of channels in `filters`.
pub fn compute<'a>(
&self,
signal: FeatureMap<'_, T>,
filters: impl Into<ArrayView4<'a, T>>,
) -> ocl::Result<Array4<T>> {
self.0.compute(signal, filters.into(), None)
}
/// Performs convolution on the provided `signal` and `filters`, with the output offset
/// by the provided per-filter biases.
///
/// Parameters, return value and panics are the same as for [`Self::compute()`].
pub fn compute_with_biases<'a>(
&self,
signal: FeatureMap<'_, T>,
filters: impl Into<ArrayView4<'a, T>>,
filter_biases: &[T::Acc],
) -> ocl::Result<Array4<T>> {
self.0.compute(signal, filters.into(), Some(filter_biases))
}
}
/// Convolution with pinned filters memory. Pinning memory increases efficiency at the cost
/// of making the convolution less flexible.
///
/// `FiltersConvolution` can be created by calling [`with_filters()`](Convolution::with_filters())
/// or [`with_biased_filters()`](Convolution::with_biased_filters()) methods in `Convolution`.
pub struct FiltersConvolution<T: ConvElement>(Base<Filters<T>>);
impl<T> fmt::Debug for FiltersConvolution<T>
where
T: ConvElement,
T::Params: fmt::Debug,
{
fn fmt(&self, formatter: &mut fmt::Formatter<'_>) -> fmt::Result {
formatter
.debug_tuple("FiltersConvolution")
.field(&self.0)
.finish()
}
}
impl<T: ConvElement> FiltersConvolution<T> {
/// Spatial size of the convolution.
pub fn size(&self) -> u32 {
self.0.size()
}
/// Returns general parameters of the convolution.
pub fn params(&self) -> T::Params {
self.0.params()
}
/// Sets convolution parameters.
pub fn set_params(&mut self, params: T::Params) -> ocl::Result<()> {
self.0.set_params(params)
}
/// Pins signal and output memory for this convolution.
pub fn pin(self, signal_shape: FeatureMapShape) -> ocl::Result<PinnedConvolution<T>> {
self.0.pinned(signal_shape).map(PinnedConvolution)
}
/// Computes the convolution on the provided signal.
pub fn compute(&self, signal: FeatureMap<'_, T>) -> ocl::Result<Array4<T>> {
self.0.compute(signal)
}
}
/// Convolution with pinned memory for filters, signal and output. Pinning memory increases
/// efficiency at the cost of making the convolution less flexible.
///
/// `PinnedConvolution` can be created from a [`FiltersConvolution`] by calling
/// [`pin()`](FiltersConvolution::pin()).
pub struct PinnedConvolution<T: ConvElement>(Base<Pinned<T>>);
impl<T> fmt::Debug for PinnedConvolution<T>
where
T: ConvElement,
T::Params: fmt::Debug,
{
fn fmt(&self, formatter: &mut fmt::Formatter<'_>) -> fmt::Result {
formatter
.debug_tuple("PinnedConvolution")
.field(&self.0)
.finish()
}
}
impl<T: ConvElement> PinnedConvolution<T> {
/// Spatial size of the convolution.
pub fn size(&self) -> u32 {
self.0.size()
}
/// Returns general parameters of the convolution.
pub fn params(&self) -> T::Params {
self.0.params()
}
/// Sets convolution parameters.
pub fn set_params(&mut self, params: T::Params) -> ocl::Result<()> {
self.0.set_params(params)
}
/// Computes the convolution on the provided signal.
///
/// # Panics
///
/// - Panics if signal dimensions do not agree with the ones provided
/// to the [`pin()` method](FiltersConvolution::pin()).
pub fn compute(&self, signal: FeatureMap<'_, T>) -> ocl::Result<Array4<T>> {
self.0.compute(signal)
}
}
#[cfg(doctest)]
doc_comment::doctest!("../README.md");