1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
//! Hierarchical secret derivation with Blake2b and random number generators.
//!
//! # How it works
//!
//! This crate provides [`SecretTree`] – a structure produced from a 32-byte seed that
//! may be converted into a secret key or a cryptographically secure
//! pseudo-random number generator (CSPRNG).
//! Besides that, an `SecretTree` can produce child trees, which are
//! identified by a string [`Name`] or an integer index. This enables creating
//! *hierarchies* of secrets (like `some_secret/0`, `some_secret/1` and `other_secret/foo/1/bar`),
//! which are ultimately derived from a single `SecretTree`. It’s enough to securely store
//! the seed of this root tree (e.g., in a passphrase-encrypted form) to recreate all secrets.
//!
//! The derived secrets cannot be linked; leakage of a derived secret does not compromise
//! sibling secrets or the parent `SecretTree`.
//!
//! # Crate features
//!
//! The crate is `no_std`-compatible. There is optional `std` support enabled via the `std` feature,
//! which is on by default.
//!
//! # Implementation details
//!
//! `SecretTree` uses the [Blake2b] keyed hash function to derive the following kinds of data:
//!
//! - secret key
//! - CSPRNG seed (the RNG used is [`ChaChaRng`])
//! - seeds for child `SecretTree`s
//!
//! The procedure is similar to the use of Blake2b for key derivation in [libsodium]\:
//!
//! - Blake2b is used with a custom initialization block. The block has two
//!   customizable parameters of interest: *salt* and *personalization* (each is 16 bytes).
//!   See the table below for information how these two parameters are set for each type
//!   of derived data.
//! - The key is the seed of the `SecretTree` instance used for derivation.
//! - The message is an empty bit string.
//!
//! The length of derived data is 32 bytes in all cases.
//!
//! ## Salt and personalization
//!
//! | Data type | Salt | Personalization |
//! |:----------|:-----|:----------------|
//! | Secret key | `[0; 16]` | `b"bytes\0\0...\0"` |
//! | CSPRNG seed | `[0; 16]` | `b"rng\0\0...\0"` |
//! | Seed for a [named child](SecretTree::child()) | `name.as_bytes()` (zero-padded) | `b"name\0\0...\0"` |
//! | Seed for an [indexed child](SecretTree::index()) | `LittleEndian(index)` | `b"index\0\0...\0"` |
//! | Seed for a [digest child](SecretTree::digest()) (1st iter) | `digest[..16]` | `b"digest0\0\0...\0"` |
//! | Seed for a digest child (2nd iter) | `digest[16..]` | `b"digest1\0\0...\0"` |
//!
//! Derivation of a secret key, CSPRNG seed and seeds for indexed children are
//! all fully compatible with libsodium.
//! libsodium uses the salt section in the Blake2b initialization block to store
//! the *index* of a child key, and the personalization section to store its *context*.
//!
//! For example, the CSPRNG seed can be computed as follows (if we translate libsodium API
//! from C to Rust):
//!
//! ```
//! use rand::SeedableRng;
//! use rand_chacha::ChaChaRng;
//! # fn crypto_kdf_derive_from_key(_: &mut [u8], _: u64, _: &[u8; 8], _: &[u8; 32]) {}
//!
//! let parent_seed: [u8; 32] = // ...
//! #   [0; 32];
//! let mut rng_seed = [0; 32];
//! crypto_kdf_derive_from_key(
//!     &mut rng_seed,
//!     /* index */ 0,
//!     /* context */ b"rng\0\0\0\0\0",
//!     /* master_key */ &parent_seed,
//! );
//! let rng = ChaChaRng::from_seed(rng_seed);
//! ```
//!
//! In case of named and digest children, we utilize the entire salt section, while libsodium
//! only uses the first 8 bytes.
//!
//! For digest children, the derivation procedure is applied 2 times, taking the first 16 bytes
//! and the remaining 16 bytes of the digest respectively. The 32-byte key derived on the first
//! iteration is used as the master key input for the second iteration. Such a procedure
//! is necessary because Blake2b only supports 16-byte salts.
//!
//! # Design motivations
//!
//! - We allow to derive RNGs besides keys in order to allow a richer variety of applications.
//!   RNGs can be used in more complex use cases than fixed-size byte arrays,
//!   e.g., when the length of the secret depends on previous RNG output, or RNG is used to sample
//!   a complex distribution.
//! - Derivation in general (instead of using a single `SeedableRng` to create all secrets)
//!   allows to add new secrets or remove old ones without worrying about compatibility.
//! - Child RNGs identified by an index can be used to derive secrets of the same type,
//!   the quantity of which is unbounded. As an example, they can be used to produce
//!   blinding factors for [Pedersen commitments] (e.g., in a privacy-focused cryptocurrency).
//! - Some steps are taken to make it difficult to use `SecretTree` incorrectly. For example,
//!   `rng()` and `fill()` methods consume the tree instance, which makes it harder to reuse
//!   the same RNG for multiple purposes (which is not intended).
//!
//! [libsodium]: https://download.libsodium.org/doc/key_derivation
//! [Blake2b]: https://tools.ietf.org/html/rfc7693
//! [Pedersen commitments]: https://en.wikipedia.org/wiki/Commitment_scheme

#![cfg_attr(not(feature = "std"), no_std)]
// Documentation settings
#![doc(html_root_url = "https://docs.rs/secret-tree/0.5.0")]
// Linter settings
#![warn(missing_docs, missing_debug_implementations)]
#![warn(clippy::all, clippy::pedantic)]
#![allow(
    clippy::missing_errors_doc,
    clippy::must_use_candidate,
    clippy::module_name_repetitions
)]

#[cfg(all(not(feature = "std"), test))]
extern crate std;

use rand_chacha::ChaChaRng;
use rand_core::{CryptoRng, RngCore, SeedableRng};
use secrecy::{zeroize::Zeroize, ExposeSecret, Secret};

use core::{
    array::TryFromSliceError,
    convert::TryInto,
    fmt,
    str::{self, FromStr},
};

mod byte_slice;
mod kdf;

pub use crate::{byte_slice::AsByteSliceMut, kdf::SEED_LEN};

use crate::kdf::{derive_key, try_derive_key, Index, CONTEXT_LEN, SALT_LEN};

/// Maximum byte length of a [`Name`] (16).
pub const MAX_NAME_LEN: usize = SALT_LEN;

/// Alias for a [`Secret`] array that contains seed bytes.
pub type Seed = Secret<[u8; SEED_LEN]>;

/// Seeded structure that can be used to produce secrets and child `SecretTree`s.
///
/// # Usage
///
/// During the program lifecycle, a root `SecretTree` should be restored from
/// a secure persistent form (e.g., a passphrase-encrypted file) and then used to derive
/// child trees and secrets. On the first use, the root should be initialized from a CSPRNG, such
/// as `rand::thread_rng()`. The tree is not needed during the program execution and can
/// be safely dropped after deriving necessary secrets (which zeroes out the tree seed).
///
/// It is possible to modify the derivation hierarchy over the course of program evolution
/// by adding new secrets or abandoning the existing ones.
/// However, the purpose of any given tree path should be fixed; that is, if some version
/// of a program used path `foo/bar` to derive an Ed25519 keypair, a newer version
/// shouldn’t use `foo/bar` to derive an AES-128 key. Violating this rule may lead
/// to leaking the secret.
///
/// # Examples
///
/// ```
/// use secret_tree::{SecretTree, Name};
/// use rand::{Rng, thread_rng};
/// use secrecy::{ExposeSecret, Secret};
///
/// let tree = SecretTree::new(&mut thread_rng());
/// // Don't forget to securely store secrets! Here, we wrap them
/// // in a container that automatically zeroes the secret on drop.
/// let first_secret: Secret<[u8; 32]> = tree
///     .child(Name::new("first"))
///     .create_secret();
///
/// // We can derive hierarchical secrets. The secrets below
/// // follow logical paths `sequence/0`, `sequence/1`, .., `sequence/4`
/// // relative to the `tree`.
/// let child_store = tree.child(Name::new("sequence"));
/// let more_secrets: Vec<Secret<[u64; 4]>> = (0..5)
///     .map(|i| Secret::new(child_store.index(i).rng().gen()))
///     .collect();
///
/// // The tree is compactly stored as a single 32-byte seed.
/// let seed = tree.seed().to_owned();
/// drop(tree);
///
/// // If we restore the tree from the seed, we can restore all derived secrets.
/// let tree = SecretTree::from_seed(seed);
/// let restored_secret: Secret<[u8; 32]> = tree
///     .child(Name::new("first"))
///     .create_secret();
/// assert_eq!(
///     first_secret.expose_secret(),
///     restored_secret.expose_secret()
/// );
/// ```
#[derive(Debug)]
#[must_use = "A tree should generate a secret or child tree"]
pub struct SecretTree {
    seed: Seed,
}

impl SecretTree {
    const FILL_BYTES_CONTEXT: [u8; CONTEXT_LEN] = *b"bytes\0\0\0";
    const RNG_CONTEXT: [u8; CONTEXT_LEN] = *b"rng\0\0\0\0\0";
    const NAME_CONTEXT: [u8; CONTEXT_LEN] = *b"name\0\0\0\0";
    const INDEX_CONTEXT: [u8; CONTEXT_LEN] = *b"index\0\0\0";
    const DIGEST_START_CONTEXT: [u8; CONTEXT_LEN] = *b"digest0\0";
    const DIGEST_END_CONTEXT: [u8; CONTEXT_LEN] = *b"digest1\0";

    /// Generates a tree by sampling its seed from the supplied RNG.
    pub fn new<R: RngCore + CryptoRng>(rng: &mut R) -> Self {
        let mut seed = [0; 32];
        rng.fill_bytes(&mut seed);
        Self {
            seed: Secret::new(seed),
        }
    }

    /// Creates a tree from the seed.
    pub fn from_seed(seed: Seed) -> Self {
        Self { seed }
    }

    /// Restores a tree from the seed specified as a byte slice.
    ///
    /// # Errors
    ///
    /// Returns an error if `bytes` has an invalid length (not [`SEED_LEN`]).
    pub fn from_slice(bytes: &[u8]) -> Result<Self, TryFromSliceError> {
        let seed: [u8; 32] = bytes.try_into()?;
        Ok(Self {
            seed: Secret::new(seed),
        })
    }

    /// Returns the tree seed.
    pub fn seed(&self) -> &Seed {
        &self.seed
    }

    /// Converts this tree into a cryptographically secure pseudo-random number generator
    /// (CSPRNG). This RNG can then be used to reproducibly create secrets (e.g., secret keys).
    ///
    /// # Security
    ///
    /// [`Self::fill()`] should be preferred if the secret allows it. While using a CSPRNG
    /// to generate secrets is theoretically sound, it introduces a new entity that
    /// may leak information.
    /// `fill()` is especially useful if the filled buffer implements zeroing on drop;
    /// the state of a CSPRNG generator returned by `rng()` **is not** zeroed on drop and thus
    /// creates a potential attack vector. (However theoretical it may be; `ChaChaRng`
    /// has a notably small state size - ~160 bytes, so it may be better localized
    /// and have lower risk to be accessed by the adversary than other CSPRNG implementations.)
    pub fn rng(self) -> ChaChaRng {
        let mut seed = <ChaChaRng as SeedableRng>::Seed::default();
        derive_key(
            seed.as_mut(),
            Index::None,
            Self::RNG_CONTEXT,
            self.seed.expose_secret(),
        );
        ChaChaRng::from_seed(seed)
    }

    /// Tries to fill the specified buffer with a key derived from the seed of this tree.
    ///
    /// # Errors
    ///
    /// Errors if the buffer does not have length `16..=64` bytes. Use [`Self::rng()`]
    /// if the buffer size may be outside these bounds, or if the secret must be derived
    /// in a more complex way.
    pub fn try_fill<T: AsByteSliceMut + ?Sized>(self, dest: &mut T) -> Result<(), FillError> {
        try_derive_key(
            dest.as_byte_slice_mut(),
            Index::None,
            Self::FILL_BYTES_CONTEXT,
            self.seed.expose_secret(),
        )?;
        dest.convert_to_le();
        Ok(())
    }

    /// Fills the specified buffer with a key derived from the seed of this tree.
    ///
    /// # Panics
    ///
    /// Panics in the same cases when [`Self::try_fill()`] returns an error.
    pub fn fill<T: AsByteSliceMut + ?Sized>(self, dest: &mut T) {
        self.try_fill(dest).unwrap_or_else(|err| {
            panic!("Failed filling a buffer from `SecretTree`: {err}");
        });
    }

    /// Tries to create a secret by instantiating a buffer and filling it with a key derived from
    /// the seed of this tree. Essentially, this is a more high-level wrapper around
    /// [`Self::try_fill()`].
    ///
    /// # Errors
    ///
    /// Returns an error if `T` does not have length `16..=64` bytes. Use [`Self::rng()`]
    /// if the buffer size may be outside these bounds, or if the secret must be derived
    /// in a more complex way.
    pub fn try_create_secret<T>(self) -> Result<Secret<T>, FillError>
    where
        T: AsByteSliceMut + Default + Zeroize,
    {
        let mut secret_value = T::default();
        self.try_fill(&mut secret_value)?;
        Ok(Secret::new(secret_value))
    }

    /// Creates a secret by instantiating a buffer and filling it with a key derived from
    /// the seed of this tree.
    ///
    /// # Panics
    ///
    /// Panics in the same cases when [`Self::try_create_secret()`] returns an error.
    pub fn create_secret<T>(self) -> Secret<T>
    where
        T: AsByteSliceMut + Default + Zeroize,
    {
        self.try_create_secret().unwrap_or_else(|err| {
            panic!("Failed creating a secret from `SecretTree`: {err}");
        })
    }

    /// Produces a child with the specified string identifier.
    pub fn child(&self, name: Name) -> Self {
        let mut child_seed = [0_u8; 32];
        derive_key(
            &mut child_seed,
            Index::Bytes(name.0),
            Self::NAME_CONTEXT,
            self.seed.expose_secret(),
        );
        Self::from_seed(Secret::new(child_seed))
    }

    /// Produces a child with the specified integer index.
    pub fn index(&self, index: u64) -> Self {
        let mut child_seed = [0_u8; 32];
        derive_key(
            &mut child_seed,
            Index::Number(index),
            Self::INDEX_CONTEXT,
            self.seed.expose_secret(),
        );
        Self::from_seed(Secret::new(child_seed))
    }

    /// Produces a child with the specified 32-byte digest (e.g., an output of SHA-256,
    /// SHA3-256 or Keccak256 hash functions).
    ///
    /// This method can be used for arbitrarily-sized keys by first digesting them
    /// with a collision-resistant hash function.
    pub fn digest(&self, digest: &[u8; 32]) -> Self {
        let mut first_half_of_digest = [0_u8; SALT_LEN];
        first_half_of_digest.copy_from_slice(&digest[0..SALT_LEN]);
        let mut second_half_of_digest = [0_u8; SALT_LEN];
        second_half_of_digest.copy_from_slice(&digest[SALT_LEN..]);

        let mut intermediate_seed = [0_u8; 32];
        derive_key(
            &mut intermediate_seed,
            Index::Bytes(first_half_of_digest),
            Self::DIGEST_START_CONTEXT,
            self.seed.expose_secret(),
        );
        let intermediate_seed = Secret::new(intermediate_seed);

        let mut child_seed = [0_u8; 32];
        derive_key(
            &mut child_seed,
            Index::Bytes(second_half_of_digest),
            Self::DIGEST_END_CONTEXT,
            intermediate_seed.expose_secret(),
        );
        Self::from_seed(Secret::new(child_seed))
    }
}

/// Errors that can occur when calling [`SecretTree::try_fill()`].
#[derive(Debug)]
#[non_exhaustive]
pub enum FillError {
    /// The supplied buffer is too small to be filled.
    BufferTooSmall {
        /// Byte size of the supplied buffer.
        size: usize,
        /// Minimum byte size for supported buffers.
        min_supported_size: usize,
    },
    /// The supplied buffer is too large to be filled.
    BufferTooLarge {
        /// Byte size of the supplied buffer.
        size: usize,
        /// Maximum byte size for supported buffers.
        max_supported_size: usize,
    },
}

impl fmt::Display for FillError {
    fn fmt(&self, formatter: &mut fmt::Formatter<'_>) -> fmt::Result {
        match self {
            Self::BufferTooSmall {
                size,
                min_supported_size,
            } => {
                write!(
                    formatter,
                    "supplied buffer ({size} bytes) is too small to be filled; \
                     min supported size is {min_supported_size} bytes"
                )
            }

            Self::BufferTooLarge {
                size,
                max_supported_size,
            } => {
                write!(
                    formatter,
                    "supplied buffer ({size} bytes) is too large to be filled; \
                     max supported size is {max_supported_size} bytes"
                )
            }
        }
    }
}

#[cfg(feature = "std")]
impl std::error::Error for FillError {}

/// Name of a child [`SecretTree`].
///
/// Used in [`SecretTree::child()`]; see its documentation for more context.
///
/// An original `str` can be extracted from `Name` using [`AsRef`] / [`Display`](fmt::Display)
/// implementations:
///
/// ```
/// # use secret_tree::Name;
/// const NAME: Name = Name::new("test_name");
/// assert_eq!(NAME.as_ref(), "test_name");
/// assert_eq!(NAME.to_string(), "test_name");
/// ```
#[derive(Clone, Copy, PartialEq, Eq, Hash)]
pub struct Name([u8; SALT_LEN]);

impl Name {
    /// Creates a new `Name`.
    ///
    /// The supplied string must be no more than [`MAX_NAME_LEN`] bytes in length
    /// and must not contain null chars `'\0'`.
    ///
    /// This is a constant method, which perform all relevant checks during compilation in
    /// a constant context:
    ///
    /// ```
    /// # use secret_tree::Name;
    /// const NAME: Name = Name::new("some_name");
    /// ```
    ///
    /// For example, this won't compile since the name is too long (17 chars):
    ///
    /// ```compile_fail
    /// # use secret_tree::Name;
    /// const OVERLY_LONG_NAME: Name = Name::new("Overly long name!");
    /// ```
    ///
    /// ...And this won't compile because the name contains a `\0` char:
    ///
    /// ```compile_fail
    /// # use secret_tree::Name;
    /// const NAME_WITH_ZERO_CHARS: Name = Name::new("12\03");
    /// ```
    ///
    /// # Panics
    ///
    /// Panics if `name` is overly long or contains null chars.
    /// Use the [`FromStr`] implementation for a fallible / non-panicking alternative.
    pub const fn new(name: &str) -> Self {
        let bytes = name.as_bytes();
        assert!(
            bytes.len() <= SALT_LEN,
            "name is too long (should be <=16 bytes)"
        );

        let mut i = 0;
        let mut buffer = [0_u8; SALT_LEN];
        while i < name.len() {
            assert!(bytes[i] != 0, "name contains a null char");
            buffer[i] = bytes[i];
            i += 1;
        }
        Name(buffer)
    }
}

impl FromStr for Name {
    type Err = NameError;

    fn from_str(name: &str) -> Result<Self, Self::Err> {
        let byte_len = name.as_bytes().len();
        if byte_len > SALT_LEN {
            return Err(NameError::TooLong);
        }
        if name.as_bytes().contains(&0) {
            return Err(NameError::NullChar);
        }

        let mut bytes = [0; SALT_LEN];
        bytes[..byte_len].copy_from_slice(name.as_bytes());
        Ok(Self(bytes))
    }
}

impl AsRef<str> for Name {
    fn as_ref(&self) -> &str {
        let str_len = self.0.iter().position(|&ch| ch == 0).unwrap_or(SALT_LEN);
        unsafe {
            // SAFETY: safe by construction; we only ever create `Name`s from valid UTF-8 sequences.
            str::from_utf8_unchecked(&self.0[..str_len])
        }
    }
}

impl fmt::Debug for Name {
    fn fmt(&self, formatter: &mut fmt::Formatter<'_>) -> fmt::Result {
        formatter.debug_tuple("Name").field(&self.as_ref()).finish()
    }
}

impl fmt::Display for Name {
    fn fmt(&self, formatter: &mut fmt::Formatter<'_>) -> fmt::Result {
        formatter.write_str(self.as_ref())
    }
}

/// Errors that can occur when converting a `&str` into [`Name`].
#[derive(Debug)]
#[non_exhaustive]
pub enum NameError {
    /// The string is too long. `Name`s should be 0..=16 bytes.
    TooLong,
    /// Name contains a null char `\0`.
    NullChar,
}

impl fmt::Display for NameError {
    fn fmt(&self, formatter: &mut fmt::Formatter<'_>) -> fmt::Result {
        formatter.write_str(match self {
            Self::TooLong => "name is too long, 0..=16 bytes expected",
            Self::NullChar => "name contains a null char",
        })
    }
}

#[cfg(feature = "std")]
impl std::error::Error for NameError {}

#[cfg(doctest)]
doc_comment::doctest!("../README.md");

#[cfg(test)]
mod tests {
    use super::*;

    use rand::{Rng, SeedableRng};

    #[test]
    fn children_with_same_bytes_in_key() {
        let name = Name::new("A");
        let index = u64::from(b'A');
        let tree = SecretTree::new(&mut ChaChaRng::seed_from_u64(123));
        let named_child = tree.child(name);
        let indexed_child = tree.index(index);
        assert_ne!(
            named_child.seed.expose_secret(),
            indexed_child.seed.expose_secret()
        );
    }

    #[test]
    fn fill_and_rng_result_in_different_data() {
        let tree = SecretTree::new(&mut ChaChaRng::seed_from_u64(123));
        let mut buffer = [0_u64; 8];
        tree.child(Name::new("foo")).fill(&mut buffer);
        let other_buffer: [u64; 8] = tree.child(Name::new("foo")).rng().gen();
        assert_ne!(buffer, other_buffer);
    }

    #[test]
    #[should_panic(expected = "supplied buffer (12 bytes) is too small to be filled")]
    fn filling_undersized_key() {
        let tree = SecretTree::new(&mut ChaChaRng::seed_from_u64(123));
        let mut buffer = [0_u8; 12];
        tree.fill(&mut buffer);
    }

    #[test]
    fn error_filling_undersized_key() {
        let tree = SecretTree::new(&mut ChaChaRng::seed_from_u64(123));
        let mut buffer = [0_u8; 12];
        let err = tree.try_fill(&mut buffer).unwrap_err();

        assert!(matches!(
            err,
            FillError::BufferTooSmall {
                size: 12,
                min_supported_size: 16,
            }
        ));
        let err = err.to_string();
        assert!(
            err.contains("supplied buffer (12 bytes) is too small to be filled"),
            "{err}"
        );
        assert!(err.contains("min supported size is 16 bytes"), "{err}");
    }

    #[test]
    #[should_panic(expected = "supplied buffer (80 bytes) is too large to be filled")]
    fn filling_oversized_key() {
        let tree = SecretTree::new(&mut ChaChaRng::seed_from_u64(123));
        let mut buffer = [0_u64; 10];
        tree.fill(&mut buffer);
    }

    #[test]
    fn error_filling_oversized_key() {
        let tree = SecretTree::new(&mut ChaChaRng::seed_from_u64(123));
        let mut buffer = [0_u64; 10];
        let err = tree.try_fill(&mut buffer).unwrap_err();

        assert!(matches!(
            err,
            FillError::BufferTooLarge {
                size: 80,
                max_supported_size: 64,
            }
        ));
        let err = err.to_string();
        assert!(
            err.contains("supplied buffer (80 bytes) is too large to be filled"),
            "{err}"
        );
        assert!(err.contains("max supported size is 64 bytes"), "{err}");
    }

    #[test]
    fn filling_acceptable_buffers() {
        let mut u8_buffer = [0_u8; 40];
        let mut i32_buffer = [0_i32; 16];
        let mut u128_buffer = [0_u128];
        // Using `Vec` to store secrets is usually a bad idea because of its placement in heap;
        // here it is used just to test capabilities.
        let mut vec_buffer = [0_u16; 24];

        let tree = SecretTree::new(&mut ChaChaRng::seed_from_u64(123));
        tree.child(Name::new("u8")).fill(&mut u8_buffer[..]);
        tree.child(Name::new("i32")).fill(&mut i32_buffer);
        tree.child(Name::new("u128")).fill(&mut u128_buffer);
        tree.child(Name::new("vec")).fill(&mut vec_buffer[..]);
    }

    #[test]
    #[should_panic(expected = "name contains a null char")]
    fn name_with_null_chars_cannot_be_created() {
        let _name = Name::new("some\0name");
    }

    #[test]
    fn name_with_null_chars_error() {
        let err = Name::from_str("some\0name").unwrap_err();
        assert!(matches!(err, NameError::NullChar));
    }

    #[test]
    #[should_panic(expected = "name is too long")]
    fn overly_long_name_cannot_be_created() {
        let _name = Name::new("Overly long name?");
    }

    #[test]
    fn overly_long_name_error() {
        let err = Name::from_str("Overly long name?").unwrap_err();
        assert!(matches!(err, NameError::TooLong));
    }

    #[test]
    fn name_new_pads_input_with_zeros() {
        const SAMPLES: &[(Name, &[u8; MAX_NAME_LEN])] = &[
            (Name::new(""), b"\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0"),
            (Name::new("O"), b"O\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0"),
            (Name::new("Ov"), b"Ov\0\0\0\0\0\0\0\0\0\0\0\0\0\0"),
            (Name::new("Ove"), b"Ove\0\0\0\0\0\0\0\0\0\0\0\0\0"),
            (Name::new("Over"), b"Over\0\0\0\0\0\0\0\0\0\0\0\0"),
            (Name::new("Overl"), b"Overl\0\0\0\0\0\0\0\0\0\0\0"),
            (Name::new("Overly"), b"Overly\0\0\0\0\0\0\0\0\0\0"),
            (Name::new("Overly "), b"Overly \0\0\0\0\0\0\0\0\0"),
            (Name::new("Overly l"), b"Overly l\0\0\0\0\0\0\0\0"),
            (Name::new("Overly lo"), b"Overly lo\0\0\0\0\0\0\0"),
            (Name::new("Overly lon"), b"Overly lon\0\0\0\0\0\0"),
            (Name::new("Overly long"), b"Overly long\0\0\0\0\0"),
            (Name::new("Overly long "), b"Overly long \0\0\0\0"),
            (Name::new("Overly long n"), b"Overly long n\0\0\0"),
            (Name::new("Overly long na"), b"Overly long na\0\0"),
            (Name::new("Overly long nam"), b"Overly long nam\0"),
            (Name::new("Overly long name"), b"Overly long name"),
        ];

        for (i, &(name, expected_bytes)) in SAMPLES.iter().enumerate() {
            assert_eq!(name.0, *expected_bytes);
            let expected_str = &"Overly long name"[..i];
            assert_eq!(name.to_string(), expected_str);
            assert_eq!(name.as_ref(), expected_str);
            assert!(format!("{name:?}").contains(expected_str));
        }
    }

    #[test]
    fn buffers_with_different_size_should_be_unrelated() {
        let tree = SecretTree::new(&mut ChaChaRng::seed_from_u64(123));
        let mut bytes = [0_u8; 16];
        tree.child(Name::new("foo")).fill(&mut bytes);
        let mut other_bytes = [0_u8; 32];
        tree.child(Name::new("foo")).fill(&mut other_bytes);
        assert!(bytes.iter().zip(&other_bytes).any(|(&x, &y)| x != y));
    }

    #[test]
    fn digest_derivation_depends_on_all_bits_of_digest() {
        const RNG_SEED: u64 = 12345;

        let mut rng = ChaChaRng::seed_from_u64(RNG_SEED);
        let tree = SecretTree::new(&mut rng);
        let mut digest = [0_u8; 32];
        rng.fill_bytes(&mut digest);

        let child_seed = tree.digest(&digest).seed;
        for byte_idx in 0..32 {
            for bit_idx in 0..8 {
                let mut mutated_digest = digest;
                mutated_digest[byte_idx] ^= 1 << bit_idx;
                assert_ne!(mutated_digest, digest);

                let mutated_child_seed = tree.digest(&mutated_digest).seed;
                assert_ne!(
                    child_seed.expose_secret(),
                    mutated_child_seed.expose_secret()
                );
            }
        }
    }
}