1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798
//! Hierarchical secret derivation with Blake2b and random number generators.
//!
//! # How it works
//!
//! This crate provides [`SecretTree`] – a structure produced from a 32-byte seed that
//! may be converted into a secret key or a cryptographically secure
//! pseudo-random number generator (CSPRNG).
//! Besides that, an `SecretTree` can produce child trees, which are
//! identified by a string [`Name`] or an integer index. This enables creating
//! *hierarchies* of secrets (like `some_secret/0`, `some_secret/1` and `other_secret/foo/1/bar`),
//! which are ultimately derived from a single `SecretTree`. It’s enough to securely store
//! the seed of this root tree (e.g., in a passphrase-encrypted form) to recreate all secrets.
//!
//! The derived secrets cannot be linked; leakage of a derived secret does not compromise
//! sibling secrets or the parent `SecretTree`.
//!
//! # Crate features
//!
//! The crate is `no_std`-compatible. There is optional `std` support enabled via the `std` feature,
//! which is on by default.
//!
//! # Implementation details
//!
//! `SecretTree` uses the [Blake2b] keyed hash function to derive the following kinds of data:
//!
//! - secret key
//! - CSPRNG seed (the RNG used is [`ChaChaRng`])
//! - seeds for child `SecretTree`s
//!
//! The procedure is similar to the use of Blake2b for key derivation in [libsodium]\:
//!
//! - Blake2b is used with a custom initialization block. The block has two
//! customizable parameters of interest: *salt* and *personalization* (each is 16 bytes).
//! See the table below for information how these two parameters are set for each type
//! of derived data.
//! - The key is the seed of the `SecretTree` instance used for derivation.
//! - The message is an empty bit string.
//!
//! The length of derived data is 32 bytes in all cases.
//!
//! ## Salt and personalization
//!
//! | Data type | Salt | Personalization |
//! |:----------|:-----|:----------------|
//! | Secret key | `[0; 16]` | `b"bytes\0\0...\0"` |
//! | CSPRNG seed | `[0; 16]` | `b"rng\0\0...\0"` |
//! | Seed for a [named child](SecretTree::child()) | `name.as_bytes()` (zero-padded) | `b"name\0\0...\0"` |
//! | Seed for an [indexed child](SecretTree::index()) | `LittleEndian(index)` | `b"index\0\0...\0"` |
//! | Seed for a [digest child](SecretTree::digest()) (1st iter) | `digest[..16]` | `b"digest0\0\0...\0"` |
//! | Seed for a digest child (2nd iter) | `digest[16..]` | `b"digest1\0\0...\0"` |
//!
//! Derivation of a secret key, CSPRNG seed and seeds for indexed children are
//! all fully compatible with libsodium.
//! libsodium uses the salt section in the Blake2b initialization block to store
//! the *index* of a child key, and the personalization section to store its *context*.
//!
//! For example, the CSPRNG seed can be computed as follows (if we translate libsodium API
//! from C to Rust):
//!
//! ```
//! use rand::SeedableRng;
//! use rand_chacha::ChaChaRng;
//! # fn crypto_kdf_derive_from_key(_: &mut [u8], _: u64, _: &[u8; 8], _: &[u8; 32]) {}
//!
//! let parent_seed: [u8; 32] = // ...
//! # [0; 32];
//! let mut rng_seed = [0; 32];
//! crypto_kdf_derive_from_key(
//! &mut rng_seed,
//! /* index */ 0,
//! /* context */ b"rng\0\0\0\0\0",
//! /* master_key */ &parent_seed,
//! );
//! let rng = ChaChaRng::from_seed(rng_seed);
//! ```
//!
//! In case of named and digest children, we utilize the entire salt section, while libsodium
//! only uses the first 8 bytes.
//!
//! For digest children, the derivation procedure is applied 2 times, taking the first 16 bytes
//! and the remaining 16 bytes of the digest respectively. The 32-byte key derived on the first
//! iteration is used as the master key input for the second iteration. Such a procedure
//! is necessary because Blake2b only supports 16-byte salts.
//!
//! # Design motivations
//!
//! - We allow to derive RNGs besides keys in order to allow a richer variety of applications.
//! RNGs can be used in more complex use cases than fixed-size byte arrays,
//! e.g., when the length of the secret depends on previous RNG output, or RNG is used to sample
//! a complex distribution.
//! - Derivation in general (instead of using a single `SeedableRng` to create all secrets)
//! allows to add new secrets or remove old ones without worrying about compatibility.
//! - Child RNGs identified by an index can be used to derive secrets of the same type,
//! the quantity of which is unbounded. As an example, they can be used to produce
//! blinding factors for [Pedersen commitments] (e.g., in a privacy-focused cryptocurrency).
//! - Some steps are taken to make it difficult to use `SecretTree` incorrectly. For example,
//! `rng()` and `fill()` methods consume the tree instance, which makes it harder to reuse
//! the same RNG for multiple purposes (which is not intended).
//!
//! [libsodium]: https://download.libsodium.org/doc/key_derivation
//! [Blake2b]: https://tools.ietf.org/html/rfc7693
//! [Pedersen commitments]: https://en.wikipedia.org/wiki/Commitment_scheme
#![cfg_attr(not(feature = "std"), no_std)]
// Documentation settings
#![doc(html_root_url = "https://docs.rs/secret-tree/0.5.0")]
// Linter settings
#![warn(missing_docs, missing_debug_implementations)]
#![warn(clippy::all, clippy::pedantic)]
#![allow(
clippy::missing_errors_doc,
clippy::must_use_candidate,
clippy::module_name_repetitions
)]
#[cfg(all(not(feature = "std"), test))]
extern crate std;
use rand_chacha::ChaChaRng;
use rand_core::{CryptoRng, RngCore, SeedableRng};
use secrecy::{zeroize::Zeroize, CloneableSecret, ExposeSecret, SecretBox};
use core::{
array::TryFromSliceError,
convert::TryInto,
fmt,
str::{self, FromStr},
};
mod byte_slice;
mod kdf;
pub use crate::{byte_slice::AsByteSliceMut, kdf::SEED_LEN};
use crate::kdf::{derive_key, try_derive_key, Index, CONTEXT_LEN, SALT_LEN};
/// Maximum byte length of a [`Name`] (16).
pub const MAX_NAME_LEN: usize = SALT_LEN;
/// Wrapper around seed bytes.
#[derive(Debug, Clone, Default)]
struct SeedBytes([u8; SEED_LEN]);
impl Zeroize for SeedBytes {
fn zeroize(&mut self) {
self.0.zeroize();
}
}
impl CloneableSecret for SeedBytes {}
/// Seed for a [`SecretTree`].
#[derive(Debug, Clone)]
pub struct Seed(SecretBox<SeedBytes>);
impl Seed {
/// Generates a random seed using the provided RNG.
pub fn new<R: RngCore + CryptoRng>(rng: &mut R) -> Self {
Self(SecretBox::<SeedBytes>::init_with_mut(|seed| {
rng.fill_bytes(&mut seed.0);
}))
}
fn init_with(init_fn: impl FnOnce(&mut [u8; SEED_LEN])) -> Self {
Self(SecretBox::<SeedBytes>::init_with_mut(|seed_bytes| {
init_fn(&mut seed_bytes.0);
}))
}
/// Exposes the bytes contained in this seed.
pub fn expose_secret(&self) -> &[u8; SEED_LEN] {
&self.0.expose_secret().0
}
}
/// Creates a seed from a (potentially unsecured) byte slice.
impl From<&[u8; SEED_LEN]> for Seed {
fn from(bytes: &[u8; SEED_LEN]) -> Self {
Self::init_with(|seed_bytes| {
*seed_bytes = *bytes;
})
}
}
/// Seeded structure that can be used to produce secrets and child `SecretTree`s.
///
/// # Usage
///
/// During the program lifecycle, a root `SecretTree` should be restored from
/// a secure persistent form (e.g., a passphrase-encrypted file) and then used to derive
/// child trees and secrets. On the first use, the root should be initialized from a CSPRNG, such
/// as `rand::thread_rng()`. The tree is not needed during the program execution and can
/// be safely dropped after deriving necessary secrets (which zeroes out the tree seed).
///
/// It is possible to modify the derivation hierarchy over the course of program evolution
/// by adding new secrets or abandoning the existing ones.
/// However, the purpose of any given tree path should be fixed; that is, if some version
/// of a program used path `foo/bar` to derive an Ed25519 keypair, a newer version
/// shouldn’t use `foo/bar` to derive an AES-128 key. Violating this rule may lead
/// to leaking the secret.
///
/// # Examples
///
/// ```
/// use secret_tree::{SecretTree, Name};
/// use rand::{Rng, thread_rng};
/// use secrecy::{ExposeSecret, SecretBox};
///
/// let tree = SecretTree::new(&mut thread_rng());
/// // Don't forget to securely store secrets! Here, we wrap them
/// // in a container that automatically zeroes the secret on drop.
/// let first_secret: SecretBox<[u8; 32]> = tree
/// .child(Name::new("first"))
/// .create_secret();
///
/// // We can derive hierarchical secrets. The secrets below
/// // follow logical paths `sequence/0`, `sequence/1`, .., `sequence/4`
/// // relative to the `tree`.
/// let child_store = tree.child(Name::new("sequence"));
/// let more_secrets: Vec<SecretBox<[u64; 4]>> = (0..5)
/// .map(|i| SecretBox::new(Box::new(child_store.index(i).rng().gen())))
/// .collect();
///
/// // The tree is compactly stored as a single 32-byte seed.
/// let seed = tree.seed().clone();
/// drop(tree);
///
/// // If we restore the tree from the seed, we can restore all derived secrets.
/// let tree = SecretTree::from_seed(seed);
/// let restored_secret: SecretBox<[u8; 32]> = tree
/// .child(Name::new("first"))
/// .create_secret();
/// assert_eq!(
/// first_secret.expose_secret(),
/// restored_secret.expose_secret()
/// );
/// ```
#[derive(Debug)]
#[must_use = "A tree should generate a secret or child tree"]
pub struct SecretTree {
seed: Seed,
}
impl SecretTree {
const FILL_BYTES_CONTEXT: [u8; CONTEXT_LEN] = *b"bytes\0\0\0";
const RNG_CONTEXT: [u8; CONTEXT_LEN] = *b"rng\0\0\0\0\0";
const NAME_CONTEXT: [u8; CONTEXT_LEN] = *b"name\0\0\0\0";
const INDEX_CONTEXT: [u8; CONTEXT_LEN] = *b"index\0\0\0";
const DIGEST_START_CONTEXT: [u8; CONTEXT_LEN] = *b"digest0\0";
const DIGEST_END_CONTEXT: [u8; CONTEXT_LEN] = *b"digest1\0";
/// Generates a tree by sampling its seed from the supplied RNG.
pub fn new<R: RngCore + CryptoRng>(rng: &mut R) -> Self {
Self {
seed: Seed::new(rng),
}
}
/// Creates a tree from the seed.
pub fn from_seed(seed: Seed) -> Self {
Self { seed }
}
/// Restores a tree from the seed specified as a byte slice.
///
/// # Errors
///
/// Returns an error if `bytes` has an invalid length (not [`SEED_LEN`]).
pub fn from_slice(bytes: &[u8]) -> Result<Self, TryFromSliceError> {
let seed_ref: &[u8; 32] = bytes.try_into()?;
Ok(Self {
seed: seed_ref.into(),
})
}
/// Returns the tree seed.
pub fn seed(&self) -> &Seed {
&self.seed
}
/// Converts this tree into a cryptographically secure pseudo-random number generator
/// (CSPRNG). This RNG can then be used to reproducibly create secrets (e.g., secret keys).
///
/// # Security
///
/// [`Self::fill()`] should be preferred if the secret allows it. While using a CSPRNG
/// to generate secrets is theoretically sound, it introduces a new entity that
/// may leak information.
/// `fill()` is especially useful if the filled buffer implements zeroing on drop;
/// the state of a CSPRNG generator returned by `rng()` **is not** zeroed on drop and thus
/// creates a potential attack vector. (However theoretical it may be; `ChaChaRng`
/// has a notably small state size - ~160 bytes, so it may be better localized
/// and have lower risk to be accessed by the adversary than other CSPRNG implementations.)
pub fn rng(self) -> ChaChaRng {
let mut seed = <ChaChaRng as SeedableRng>::Seed::default();
derive_key(
seed.as_mut(),
Index::None,
Self::RNG_CONTEXT,
self.seed.expose_secret(),
);
ChaChaRng::from_seed(seed)
}
/// Tries to fill the specified buffer with a key derived from the seed of this tree.
///
/// # Errors
///
/// Errors if the buffer does not have length `16..=64` bytes. Use [`Self::rng()`]
/// if the buffer size may be outside these bounds, or if the secret must be derived
/// in a more complex way.
pub fn try_fill<T: AsByteSliceMut + ?Sized>(self, dest: &mut T) -> Result<(), FillError> {
try_derive_key(
dest.as_byte_slice_mut(),
Index::None,
Self::FILL_BYTES_CONTEXT,
self.seed.expose_secret(),
)?;
dest.convert_to_le();
Ok(())
}
/// Fills the specified buffer with a key derived from the seed of this tree.
///
/// # Panics
///
/// Panics in the same cases when [`Self::try_fill()`] returns an error.
pub fn fill<T: AsByteSliceMut + ?Sized>(self, dest: &mut T) {
self.try_fill(dest).unwrap_or_else(|err| {
panic!("Failed filling a buffer from `SecretTree`: {err}");
});
}
/// Tries to create a secret by instantiating a buffer and filling it with a key derived from
/// the seed of this tree. Essentially, this is a more high-level wrapper around
/// [`Self::try_fill()`].
///
/// # Errors
///
/// Returns an error if `T` does not have length `16..=64` bytes. Use [`Self::rng()`]
/// if the buffer size may be outside these bounds, or if the secret must be derived
/// in a more complex way.
pub fn try_create_secret<T>(self) -> Result<SecretBox<T>, FillError>
where
T: AsByteSliceMut + Default + Zeroize,
{
let mut result = Ok(());
let secret = SecretBox::init_with_mut(|secret_value| {
result = self.try_fill(secret_value);
});
result?;
Ok(secret)
}
/// Creates a secret by instantiating a buffer and filling it with a key derived from
/// the seed of this tree.
///
/// # Panics
///
/// Panics in the same cases when [`Self::try_create_secret()`] returns an error.
pub fn create_secret<T>(self) -> SecretBox<T>
where
T: AsByteSliceMut + Default + Zeroize,
{
self.try_create_secret().unwrap_or_else(|err| {
panic!("Failed creating a secret from `SecretTree`: {err}");
})
}
/// Produces a child with the specified string identifier.
pub fn child(&self, name: Name) -> Self {
Self::from_seed(Seed::init_with(|child_seed| {
derive_key(
child_seed,
Index::Bytes(name.0),
Self::NAME_CONTEXT,
self.seed.expose_secret(),
);
}))
}
/// Produces a child with the specified integer index.
pub fn index(&self, index: u64) -> Self {
Self::from_seed(Seed::init_with(|child_seed| {
derive_key(
child_seed,
Index::Number(index),
Self::INDEX_CONTEXT,
self.seed.expose_secret(),
);
}))
}
/// Produces a child with the specified 32-byte digest (e.g., an output of SHA-256,
/// SHA3-256 or Keccak256 hash functions).
///
/// This method can be used for arbitrarily-sized keys by first digesting them
/// with a collision-resistant hash function.
pub fn digest(&self, digest: &[u8; 32]) -> Self {
let mut first_half_of_digest = [0_u8; SALT_LEN];
first_half_of_digest.copy_from_slice(&digest[0..SALT_LEN]);
let mut second_half_of_digest = [0_u8; SALT_LEN];
second_half_of_digest.copy_from_slice(&digest[SALT_LEN..]);
let intermediate_seed = Seed::init_with(|intermediate_seed| {
derive_key(
intermediate_seed,
Index::Bytes(first_half_of_digest),
Self::DIGEST_START_CONTEXT,
self.seed.expose_secret(),
);
});
Self::from_seed(Seed::init_with(|child_seed| {
derive_key(
child_seed,
Index::Bytes(second_half_of_digest),
Self::DIGEST_END_CONTEXT,
intermediate_seed.expose_secret(),
);
}))
}
}
/// Errors that can occur when calling [`SecretTree::try_fill()`].
#[derive(Debug)]
#[non_exhaustive]
pub enum FillError {
/// The supplied buffer is too small to be filled.
BufferTooSmall {
/// Byte size of the supplied buffer.
size: usize,
/// Minimum byte size for supported buffers.
min_supported_size: usize,
},
/// The supplied buffer is too large to be filled.
BufferTooLarge {
/// Byte size of the supplied buffer.
size: usize,
/// Maximum byte size for supported buffers.
max_supported_size: usize,
},
}
impl fmt::Display for FillError {
fn fmt(&self, formatter: &mut fmt::Formatter<'_>) -> fmt::Result {
match self {
Self::BufferTooSmall {
size,
min_supported_size,
} => {
write!(
formatter,
"supplied buffer ({size} bytes) is too small to be filled; \
min supported size is {min_supported_size} bytes"
)
}
Self::BufferTooLarge {
size,
max_supported_size,
} => {
write!(
formatter,
"supplied buffer ({size} bytes) is too large to be filled; \
max supported size is {max_supported_size} bytes"
)
}
}
}
}
#[cfg(feature = "std")]
impl std::error::Error for FillError {}
/// Name of a child [`SecretTree`].
///
/// Used in [`SecretTree::child()`]; see its documentation for more context.
///
/// An original `str` can be extracted from `Name` using [`AsRef`] / [`Display`](fmt::Display)
/// implementations:
///
/// ```
/// # use secret_tree::Name;
/// const NAME: Name = Name::new("test_name");
/// assert_eq!(NAME.as_ref(), "test_name");
/// assert_eq!(NAME.to_string(), "test_name");
/// ```
#[derive(Clone, Copy, PartialEq, Eq, Hash)]
pub struct Name([u8; SALT_LEN]);
impl Name {
/// Creates a new `Name`.
///
/// The supplied string must be no more than [`MAX_NAME_LEN`] bytes in length
/// and must not contain null chars `'\0'`.
///
/// This is a constant method, which perform all relevant checks during compilation in
/// a constant context:
///
/// ```
/// # use secret_tree::Name;
/// const NAME: Name = Name::new("some_name");
/// ```
///
/// For example, this won't compile since the name is too long (17 chars):
///
/// ```compile_fail
/// # use secret_tree::Name;
/// const OVERLY_LONG_NAME: Name = Name::new("Overly long name!");
/// ```
///
/// ...And this won't compile because the name contains a `\0` char:
///
/// ```compile_fail
/// # use secret_tree::Name;
/// const NAME_WITH_ZERO_CHARS: Name = Name::new("12\03");
/// ```
///
/// # Panics
///
/// Panics if `name` is overly long or contains null chars.
/// Use the [`FromStr`] implementation for a fallible / non-panicking alternative.
pub const fn new(name: &str) -> Self {
let bytes = name.as_bytes();
assert!(
bytes.len() <= SALT_LEN,
"name is too long (should be <=16 bytes)"
);
let mut i = 0;
let mut buffer = [0_u8; SALT_LEN];
while i < name.len() {
assert!(bytes[i] != 0, "name contains a null char");
buffer[i] = bytes[i];
i += 1;
}
Name(buffer)
}
}
impl FromStr for Name {
type Err = NameError;
fn from_str(name: &str) -> Result<Self, Self::Err> {
let byte_len = name.as_bytes().len();
if byte_len > SALT_LEN {
return Err(NameError::TooLong);
}
if name.as_bytes().contains(&0) {
return Err(NameError::NullChar);
}
let mut bytes = [0; SALT_LEN];
bytes[..byte_len].copy_from_slice(name.as_bytes());
Ok(Self(bytes))
}
}
impl AsRef<str> for Name {
fn as_ref(&self) -> &str {
let str_len = self.0.iter().position(|&ch| ch == 0).unwrap_or(SALT_LEN);
unsafe {
// SAFETY: safe by construction; we only ever create `Name`s from valid UTF-8 sequences.
str::from_utf8_unchecked(&self.0[..str_len])
}
}
}
impl fmt::Debug for Name {
fn fmt(&self, formatter: &mut fmt::Formatter<'_>) -> fmt::Result {
formatter.debug_tuple("Name").field(&self.as_ref()).finish()
}
}
impl fmt::Display for Name {
fn fmt(&self, formatter: &mut fmt::Formatter<'_>) -> fmt::Result {
formatter.write_str(self.as_ref())
}
}
/// Errors that can occur when converting a `&str` into [`Name`].
#[derive(Debug)]
#[non_exhaustive]
pub enum NameError {
/// The string is too long. `Name`s should be 0..=16 bytes.
TooLong,
/// Name contains a null char `\0`.
NullChar,
}
impl fmt::Display for NameError {
fn fmt(&self, formatter: &mut fmt::Formatter<'_>) -> fmt::Result {
formatter.write_str(match self {
Self::TooLong => "name is too long, 0..=16 bytes expected",
Self::NullChar => "name contains a null char",
})
}
}
#[cfg(feature = "std")]
impl std::error::Error for NameError {}
#[cfg(doctest)]
doc_comment::doctest!("../README.md");
#[cfg(test)]
mod tests {
use super::*;
use rand::{Rng, SeedableRng};
#[test]
fn children_with_same_bytes_in_key() {
let name = Name::new("A");
let index = u64::from(b'A');
let tree = SecretTree::new(&mut ChaChaRng::seed_from_u64(123));
let named_child = tree.child(name);
let indexed_child = tree.index(index);
assert_ne!(
named_child.seed.expose_secret(),
indexed_child.seed.expose_secret()
);
}
#[test]
fn fill_and_rng_result_in_different_data() {
let tree = SecretTree::new(&mut ChaChaRng::seed_from_u64(123));
let mut buffer = [0_u64; 8];
tree.child(Name::new("foo")).fill(&mut buffer);
let other_buffer: [u64; 8] = tree.child(Name::new("foo")).rng().gen();
assert_ne!(buffer, other_buffer);
}
#[test]
#[should_panic(expected = "supplied buffer (12 bytes) is too small to be filled")]
fn filling_undersized_key() {
let tree = SecretTree::new(&mut ChaChaRng::seed_from_u64(123));
let mut buffer = [0_u8; 12];
tree.fill(&mut buffer);
}
#[test]
fn error_filling_undersized_key() {
let tree = SecretTree::new(&mut ChaChaRng::seed_from_u64(123));
let mut buffer = [0_u8; 12];
let err = tree.try_fill(&mut buffer).unwrap_err();
assert!(matches!(
err,
FillError::BufferTooSmall {
size: 12,
min_supported_size: 16,
}
));
let err = err.to_string();
assert!(
err.contains("supplied buffer (12 bytes) is too small to be filled"),
"{err}"
);
assert!(err.contains("min supported size is 16 bytes"), "{err}");
}
#[test]
#[should_panic(expected = "supplied buffer (80 bytes) is too large to be filled")]
fn filling_oversized_key() {
let tree = SecretTree::new(&mut ChaChaRng::seed_from_u64(123));
let mut buffer = [0_u64; 10];
tree.fill(&mut buffer);
}
#[test]
fn error_filling_oversized_key() {
let tree = SecretTree::new(&mut ChaChaRng::seed_from_u64(123));
let mut buffer = [0_u64; 10];
let err = tree.try_fill(&mut buffer).unwrap_err();
assert!(matches!(
err,
FillError::BufferTooLarge {
size: 80,
max_supported_size: 64,
}
));
let err = err.to_string();
assert!(
err.contains("supplied buffer (80 bytes) is too large to be filled"),
"{err}"
);
assert!(err.contains("max supported size is 64 bytes"), "{err}");
}
#[test]
fn filling_acceptable_buffers() {
let mut u8_buffer = [0_u8; 40];
let mut i32_buffer = [0_i32; 16];
let mut u128_buffer = [0_u128];
// Using `Vec` to store secrets is usually a bad idea because of its placement in heap;
// here it is used just to test capabilities.
let mut vec_buffer = [0_u16; 24];
let tree = SecretTree::new(&mut ChaChaRng::seed_from_u64(123));
tree.child(Name::new("u8")).fill(&mut u8_buffer[..]);
tree.child(Name::new("i32")).fill(&mut i32_buffer);
tree.child(Name::new("u128")).fill(&mut u128_buffer);
tree.child(Name::new("vec")).fill(&mut vec_buffer[..]);
}
#[test]
#[should_panic(expected = "name contains a null char")]
fn name_with_null_chars_cannot_be_created() {
let _name = Name::new("some\0name");
}
#[test]
fn name_with_null_chars_error() {
let err = Name::from_str("some\0name").unwrap_err();
assert!(matches!(err, NameError::NullChar));
}
#[test]
#[should_panic(expected = "name is too long")]
fn overly_long_name_cannot_be_created() {
let _name = Name::new("Overly long name?");
}
#[test]
fn overly_long_name_error() {
let err = Name::from_str("Overly long name?").unwrap_err();
assert!(matches!(err, NameError::TooLong));
}
#[test]
fn name_new_pads_input_with_zeros() {
const SAMPLES: &[(Name, &[u8; MAX_NAME_LEN])] = &[
(Name::new(""), b"\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0"),
(Name::new("O"), b"O\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0"),
(Name::new("Ov"), b"Ov\0\0\0\0\0\0\0\0\0\0\0\0\0\0"),
(Name::new("Ove"), b"Ove\0\0\0\0\0\0\0\0\0\0\0\0\0"),
(Name::new("Over"), b"Over\0\0\0\0\0\0\0\0\0\0\0\0"),
(Name::new("Overl"), b"Overl\0\0\0\0\0\0\0\0\0\0\0"),
(Name::new("Overly"), b"Overly\0\0\0\0\0\0\0\0\0\0"),
(Name::new("Overly "), b"Overly \0\0\0\0\0\0\0\0\0"),
(Name::new("Overly l"), b"Overly l\0\0\0\0\0\0\0\0"),
(Name::new("Overly lo"), b"Overly lo\0\0\0\0\0\0\0"),
(Name::new("Overly lon"), b"Overly lon\0\0\0\0\0\0"),
(Name::new("Overly long"), b"Overly long\0\0\0\0\0"),
(Name::new("Overly long "), b"Overly long \0\0\0\0"),
(Name::new("Overly long n"), b"Overly long n\0\0\0"),
(Name::new("Overly long na"), b"Overly long na\0\0"),
(Name::new("Overly long nam"), b"Overly long nam\0"),
(Name::new("Overly long name"), b"Overly long name"),
];
for (i, &(name, expected_bytes)) in SAMPLES.iter().enumerate() {
assert_eq!(name.0, *expected_bytes);
let expected_str = &"Overly long name"[..i];
assert_eq!(name.to_string(), expected_str);
assert_eq!(name.as_ref(), expected_str);
assert!(format!("{name:?}").contains(expected_str));
}
}
#[test]
fn buffers_with_different_size_should_be_unrelated() {
let tree = SecretTree::new(&mut ChaChaRng::seed_from_u64(123));
let mut bytes = [0_u8; 16];
tree.child(Name::new("foo")).fill(&mut bytes);
let mut other_bytes = [0_u8; 32];
tree.child(Name::new("foo")).fill(&mut other_bytes);
assert!(bytes.iter().zip(&other_bytes).any(|(&x, &y)| x != y));
}
#[test]
fn digest_derivation_depends_on_all_bits_of_digest() {
const RNG_SEED: u64 = 12345;
let mut rng = ChaChaRng::seed_from_u64(RNG_SEED);
let tree = SecretTree::new(&mut rng);
let mut digest = [0_u8; 32];
rng.fill_bytes(&mut digest);
let child_seed = tree.digest(&digest).seed;
for byte_idx in 0..32 {
for bit_idx in 0..8 {
let mut mutated_digest = digest;
mutated_digest[byte_idx] ^= 1 << bit_idx;
assert_ne!(mutated_digest, digest);
let mutated_child_seed = tree.digest(&mutated_digest).seed;
assert_ne!(
child_seed.expose_secret(),
mutated_child_seed.expose_secret()
);
}
}
}
}